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Abstract

Land cover classification aims at classifying each pixel

in a satellite image into a particular land cover category,

which can be regarded as a multi-class semantic segmen-

tation task. In this paper, we propose a deep aggregation

network for solving this task, which extracts and combines

multi-layer features during the segmentation process. In

particular, we introduce soft semantic labels and graph-

based fine tuning in our proposed network for improving the

segmentation performance. In our experiments, we demon-

strate that our network performs favorably against state-of-

the-art models on the dataset of DeepGlobe Satellite Chal-

lenge, while our ablation study further verifies the effective-

ness of our proposed network architecture.

1. Introduction

Land cover information is important for various applica-

tions, such as monitoring areas of deforestation and urban-

ization. To recognize the type of land cover (e.g., areas of

urban, agriculture, water, etc.) for each pixel on a satellite

image, land cover classification can be regarded as a multi-

class semantic segmentation task [11, 8, 15].

With the availability of abundant segmentation im-

ages and recent advances in deep neural networks, sev-

eral CNN-based models [3, 4, 9, 2, 12, 10, 14] have

demonstrated the effectiveness on semantic segmentation.

For example, several works [2, 12, 9] adopt encoder-

decoder structures to take a RGB image as input and pre-

dict its corresponding semantic mask. To capture global

context information, Zhao et al. [14] incorporate multi-

scale features with a pyramid pooling module [7]. Similarly,

DeepLabv3 [3] exploits atrous convolution with multiple

rates and image-level features to improve the prediction per-

formance. DeepLabv3+ [4] further extend DeepLabv3 with

an additional decoder to refine segmentation results along

the object boundaries. A common approach adopted by the
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Figure 1: Illustration of deep aggregation net. Note that our

model takes a RGB image as input and predicts the semantic

segmentation output.

above models is to aggregate different-level features in the

procedure of prediction. However, as pointed out in [13],

simply applying skip connections from low- to high-level

layers may not fuse the spatial and semantic information in

an effective manner.

Inspired by [13], with the goal of incorporating various

information across layers in the procedure of semantic seg-

mentation, we introduce an aggregation decoder in com-

bination with DeepLabv3 model. Specifically, our model

combines different-level features progressively from the en-

coder for final prediction. On the other hand, we observe

two properties of land cover images: 1) there are no clear

boundaries across different types of land cover and 2) the

area of all types of land cover are not fragmented. Based on

these properties, we improve segmentation results by soft-

ening one-hot labels in ground truth masks and by removing

fragmented land covers in predicted masks.

In summary, our contributions are listed as follows:

• We proposed deep aggregation net for land cover seg-

mentation, which exploits semantic information across

image scales for improved segmentation.

• We utilize soft semantic labels and graph-based fine

tuning in our proposed network. Our ablation studies

further verify the effectiveness of our proposed model.
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Figure 2: Architecture of our deep aggregation net. The rectangular boxes represent tensor features and the arrows denote

operations. Blocks 1 to 4 are residual convolutional blocks, and ASPP indicates Atrous Spatial Pyramid Pooling. Features f1

l

and f2

l are extracted before the strided convolution layer (stride = 2) in Blocks 1 and 2, respectively. Each tensor feature is

specified with its output-stride (os), which denotes the ratio of input image spatial resolution to the feature resolution. During

aggregation decoding, tensor features in smaller scales are bilinearly upsampled before concatenation.

2. Proposed Method

Given pairs of RGB satellite images and land cover

masks {X,Y }, we aim at training a model to produce land

cover segmentation prediction Ỹ . In this section, we first

describe the proposed network, and further describe the de-

tails of soft semantic labels and graph-based fine tuning.

2.1. Proposed Architecture of Deep Aggregation Net

As depicted in Figure 2, our model applies an encoder-

decoder structure to perform semantic segmentation. Here

we adopt DeepLabv3 [3], which applies atrous convolu-

tion to cascaded ResNet and a pyramid pooling module, as

our encoder to extract multi-level features across different

layers. Our model further combines these features consecu-

tively from lower to higher levels. To be more detailed, we

first concatenate two low-level features f1

l and f2

l extracted

from the encoder, then feed them into convolution layers

to produce a fused feature. Next, we concatenate the fused

feature with the semantic feature fs, and introduce the fi-

nal convolution layers followed by up-sampling to obtain

segmentation masks.

Our model takes a RGB image X as input, and produces

a segmentation mask Ỹ . The training loss function Lseg for

semantic segmentation is thus defined as below:

Lseg = H(Y, Ỹ ), (1)

where H denotes the cross-entropy loss and Y denotes the

ground truth segmentation annotation.

2.2. Soft Semantic Labels for Segmentation

With the observation that there is no clear boundary be-

tween two different land cover regions within a RGB satel-

lite image, we choose to smooth spatial boundaries across

such regions during semantic segmentation. Toward this

end, we convert one-hot label segmentation mask Y into

soft label segmentation mask Ys by applying Gaussian fil-

tering on each channel independently. We also apply nor-

malization to ensure class weights of each pixel sum to one.

Therefore, our training loss can be modified as:

Lsoft
seg = H(Ys, Ỹ )

= H(g(Y ), Ỹ ),
(2)

where g(·) denotes two-dimensional Gaussian filtering with

standard deviation σ along with pixel-wise normalization.

2.3. Graph­based Fine Tuning

To prevent fragmented segmentation prediction, we em-

ploy graph-based fine tuning to refine our final prediction.

Here we consider the segmentation prediction Ỹ as an undi-

rected graph, where pixels are nodes, while the edges are

connected between adjacent pixels with the same class. We

run breadth-first search (BFS) on segmentation prediction

Ỹ to detect groups of connected pixels with a same class.

Groups with the pixel number fewer than a threshold value

T are reassigned labels of their neighbor pixels. For sim-

plicity, the neighboring pixel is defined as the pixel next to

the top-left pixel in a group. Note that our graph-based fine

tuning is applied after model prediction and do not increase

computation cost during training.
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Figure 3: Example segmentation results (a) without and (b)

with graph-based fine-tuning.

3. Experiment

We first compare the proposed method to the existing

models. We then conduct an ablation study to verify each

module of our proposed method.

3.1. Dataset and Evaluation

Here we use the dataset provided by the organizer

of CVPR 2018 DeepGlobe Satellite Challenge [5]. The

training set contains 803 RGB satellite images with size

2448×2448 pixels as well as 50cm pixel resolution. Each

satellite image is paired with a ground truth mask for land

cover type annotation. Seven types of land covers are in-

cluded: urban, agriculture, rangeland, forest, water, barren,

and unknown. Models are evaluated on the validation set

with 171 satellite images segmentation pairs. The evalu-

ation metric is pixel-wise mean Intersection over Union

(mIoU) score.

3.2. Implementation Details

We implemented our network on Tensorflow [1]. The

backbone encoder was pre-trained on ILSVRC-2012-CLS

dataset [6]. During the training process, we adopted polyno-

mial learning rate decay with decay rate 0.9, applied batch

normalization to convolution layers, randomly left-right

flipped, and cropped input images size from 2448×2448

to 512×512. The standard deviation σ of the Gussian filter

was set to 8 for soft semantic labels. The threshold value T

for graph-based fine tuning was empirically set to 8000 pix-

els, which corresponded to 2000 m2 in real world. It took

roughly 10 hours to train our network for 300 epochs with

batch size 10 on a single Nvidia GeForce GTX 1080Ti.

3.3. Comparison and Ablation Study

As shown in Table 1, we compare our deep aggregation

net with the existing models [10, 3, 4]. Our model improves

FCN [10], DeepLabv3 [3], and DeepLabv3+ [4] by 14.9%,

12.7%, and 3.4%, respectively. This demonstrates the ef-

fectiveness of the proposed deep aggregation decoder, soft

semantic labels, and graph-based fine tuning.

Table 1: Performance comparisons of semantic segmenta-

tion in mIoU.

Architecture mIoU

FCN-32s [10] 0.4588

DeepLabv3 [3] 0.4679

DeepLabv3+ [4] 0.5101

Ours 0.5272

Table 2: Ablation study of our deep aggregation net. Note

that, for simplicity, we fixed σ = 8 for soft semantic labels

and did not fine-tune the results.

Aggregation

Decoder

Soft Semantic

Labels

Graph-based

Fine Tuning
mIoU

0.5101

X 0.5259

X 0.5187

X 0.5116

X X 0.5261

X X 0.5292

X X 0.5190

X X X 0.5272

To further understand the advantage of our model against

the others, we show some qualitative results in Fig 4. FCN

shows the ability to output segmentation masks with con-

sistency over a large area, but falls short at details such as

smaller areas and boundaries. DeepLabv3 and DeepLabv3+

improve performance on these details; however, they also

produce excessive fragments and fail to maintain consis-

tency at larger areas in some cases. Beyond the models men-

tioned above, our model combines multi-level features ef-

fectively and produces more accurate segmentation results

at both larger and detail areas.

To verify each module of the proposed method, we also

present an ablation study in Table 2. First, solely applying

aggregation decoder, soft semantic labels, or graph-based

fine tuning is able to outperform the DeepLabv3+ model.

Among these modules, we observe that the proposed ag-

gregation decoder improves performance the most. Second,

our model can further improve the performance by applying

two of these modules. This indicates that these approaches

are compatible with each other. Finally, we observe that the

model adopting three modules (0.5272) are slightly behind

the model without soft semantic labels (0.5292). Accord-

ing to our empirical study, one potential reason is that stan-

dard deviation of Gaussian filter for soft semantic labels is

fixed for all experiments, and this hyper-parameter could be

learned in the future study.
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Figure 4: Example segmentation results using different models. Note that our model was able to accurately classify pixels

over different scales/regions.

4. Conclusion

We presented deep aggregation net which effectively in-

corporates the features extracted from different layers. We

also introduced soft semantic labels and graph-based fine

tuning to improve the performance of our proposed model.

In the experiment, we verified the effectiveness of our pro-

posed modules and demonstrated that our model perform

satisfactory result against the state-of-the-art models on the

dataset of DeepGlobe Satellite Challenge.
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