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Abstract

This paper describes our proposed building extraction

method in DeepGlobe - CVPR 2018 Satellite Challenge.

We proposed a semantic segmentation and ensemble learn-

ing based building extraction method for high resolution

satellite images. Several public GIS map datasets were uti-

lized through combining with the multispectral WorldView-

3 satellite image datasets for improving the building ex-

traction results. Our proposed method achieves the overall

prediction score of 0.701 on the test dataset in DeepGlobe

Building Extraction Challenge.

1. Introduction

Building extraction from remote sensing images is a pop-

ular research issue with wide attention. Deep convolu-

tional neural networks (DCNNs) based semantic segmen-

tation methods have been used in several building extrac-

tion or semantic labeling studies and achieved state-of-the-

art performance. For instance, Audebert et al [3] proposed

an Fully Convolution Network (FCN) based method for se-

mantic labeling of Earth Observation images. Iglovikov et

al [11] proposed a U-Net based method for semantic seg-

mentation of different classes in multispectral satellite im-

agery.

Many studies investigated data fusion methods to utilize

various data sources for building extractions. The LiDAR

dataset is one of the most widely used earth observation data

in many building extraction studies which provides useful

point cloud based 3D features [9]. However, the LiDAR

datasets that can be obtained for free are very limited. The
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OpenStreetMap is a very popular open source Map dataset

that have been used in several building extraction or seman-

tic segmentation studies [5, 13]. Although the effective-

ness of OpenStreetMap has been proved in many studies,

it still cannot provide enough useful information for build-

ing extraction in many regions, such as the selected areas of

Shanghai, Las Vegas and Khartoum in this challenge [8].

In this paper, we proposed a semantic segmentation and

ensemble learning based building extraction method using

multiple data sources. We utilized a data fusion method

through combining the multispectral satellite image datasets

with several public GIS map datasets. We explored the ca-

pabilities of several deep learning methods for the building

extraction task. The building extraction results were ana-

lyzed comprehensively based on the actual situation of each

city.

2. Datasets

In this challenge, we use both WorldView-3 satellite

datasets and public GIS map datasets for each city, as

we found the GIS map datasets provide useful informa-

tion for building extraction. We select the 8-band multi-

spectral WorldView datasets with pan sharpening (MUL-

PanSharpen) as the satellite datasets used for four cities. For

each city, we select the most informative map from several

public map datasets. We use the OpenStreetMap datasets

for Paris and Khartoum. We use the Google Map datasets

for Vegas. For Shanghai, there often exists a coordinate

shifting between the satellite images and most map datasets

(e.g. Google Map and Baidu Map). Moreover, the Open-

StreetMap in Shanghai provide few information of build-

ings. For these reasons, we choose the MapWorld datasets

for Shanghai city.

The OpenStreetMap [10] used in this work can be down-

loaded from its official website. The Google Map datasets
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and the MapWorld datasets can be dowloaded through their

Static Map API respectively [1, 2]. For each satellite image

in both training and test datasets, we collect its correspond-

ing map image in the same location as the satellite image

according to its geospatial information (e.g. longitude, lati-

tude and spatial resolution). All the map image datasets are

resized to 650 × 650 pixels for further combination with the

satellite images.

3. Methods

The overall workflow of our proposed method is illus-

trated in Figure 1. During training phase, the provided an-

notation files will be transformed into pixel labels for con-

ducting the supervised learning process. Models based on

DCNNs are trained for classifing each pixel of the input

image. Our adopted DCNNs based semantic segmentation

models combining with the pre-processing and the post-

processing techniques are illustrated as follows.

3.1. Data pre-processing

In this work, we proposed a two-level data pre-

processing method to mitigate the lack of available train-

ing data for the semantic segmentation models training. In

the first level, the training and test datasets of each city

are pre-processed into two collections of datasets. The

first dataset collection consists of the original 8-band mul-

tispectral satellite images. As mentioned in section 2, map

datasets can provide extra useful information for building

extraction. However, it is not reasonable if we merely use

the 3-band map datasets to train a separate network, because

in some regions the building information in map datasets

is missing or does not match the one in the corresponding

satellite images. Consequently, the second dataset collec-

tion consists of 8-band images, which combines the first five

bands of the original satellite images with the three bands of

map images.

In the second level, each of the two above dataset col-

lections is further pre-processed into two formats of in-

put image for each semantic segmentation model respec-

tively. First, the 650 × 650 images are scaled to the size

of 256 × 256 pixels. Second, the 650 × 650 images are

sliced into 3× 3 sub-images and all sub-images are used as

the input of the network. Consequently, for each city, we

finally achieved four groups of pre-processed datasets. The

whole training dataset is randomly splitted into two parts:

70% as training data and the remaining 30% as validation

data. Before feeding our dataset collections into deep neu-

ral network, we also increase the training data by four times

through four 90-degree rotations.

3.2. Semantic image segmentation

Two Deep Learning models commonly used in computer

vision image segmentation tasks have been investigated for

the building extraction task.

U-Net [14] is one of the most successful and popular

DCNN architecture for semantic segmentation. It is a good

choice for our task because it is designed for biomedical im-

age segmentation, in which the amount of available training

data is relatively low. We adopted a variant of U-Net pro-

posed in [11] for DSTL Satellite Imagery Feature Detection

challenge run by Kaggle. We modified its input layer to fit

the size of our input image (256×256 pixels, with 8 chan-

nels), and we modified its output layer to generate output

labels in 256×256 pixels. We also add a batch normaliza-

tion layer [12] after each convolutional layer. Similar with

the original U-Net model, we normalized every channel of

the inputs and then use per-channel randomized linear trans-

formations for each patch. We monitored the Jaccard coef-

ficient as an indicator for early stopping during training to

avoid over-fitting.

We also applied DeepLab[7] model in this competition.

We adopted the DeepLabv3+ implementation and hyperpa-

rameters from official tensorflow repository repo1 and fine-

tuned it with our own data based on a pretrained model on

VOC2012 datasets. However, we noticed that the evalu-

ation accuracies of DeepLabv3+ are much lower than the

accuracies obtained from U-Net. Thus we did not integrate

its results in our final submission and left it for our future

work.

3.3. Prediction ensembling

After the training and predicting phases of semantic seg-

mentation model, we obtained the probability maps of each

image in the test dataset, in which the grayscale value of

each pixel indicates the probability that it belongs to the

building class. We proposed a hierarchy of two-level en-

semble method to combine the prediction results obtained

from different models into the final integrated prediction re-

sult.

At the first level, we integrated the prediction results ob-

tained from two image pre-processing methods. The prob-

ability map obtained from the first method is scaled back to

650 × 650 pixels, and the probability map of 9 sub-images

obtained from the second method are merged into the whole

map. The probabilities of each pixel obtained from the two

methods are then averaged, resulting in the integrated prob-

ability map. At the second level, the integrated probability

maps obtained from two dataset collections are further av-

eraged into the final integrated results for post-processing.

3.4. Post-processing

After obtaining the integrated prediction results, we ap-

plied two post-processing strategies to optimize the final

prediction results. On one hand, we adjusted the probability

threshold (for separating buildings from backgrounds) from

1https://github.com/tensorflow/models/tree/master/research/deeplab
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Figure 1. Workflow of our proposed method

0.45 to 0.55 for each city. On the other hand, we adjusted

the minimal polygon size threshold (for filtering out noises

in the prediction results) from 90 to 240 pixels for each city.

The best probability threshold and the best minimal poly-

gon size threshold for the validation dataset will be adopted

to the test dataset for each city.

4. Results

4.1. Building extraction results

Table 1 shows the evaluation matrix of the building ex-

traction results of each city in the development phase. Fig-

ure 2 shows the F1 scores of the baseline model of our pro-

posed method and those obtained after three optimization

strategies. For Vegas and Paris, three strategies bring the

improvement of F1 score in similar extend. For Shang-

hai, the combination of Satellite and Map datasets brings

remarkable improvement of F1 score. For Khartoum, the

improvement of F1 score benefits greatly from the ensem-

ble and post-processing strategy. In the final phase, the F1

scores of Vegas, Paris, Shanghai and Khartoum are 0.894,

0.740, 0.625 and 0.552, respectively.

Table 1. Evaluation matrix of each city in the development phase,

including true positive (TP), false positive (FP), false negative

(FN), and F1 score.

Vegas Paris Shanghai Khartoum

TP 29705 3807 10792 3503

FP 1736 523 3502 960

FN 5928 2030 9859 4690

F1 Score 0.886 0.749 0.618 0.554

4.2. Results analysis and discussion

Shanghai has the second lowest F1 Score among the four

cities. Compared with the other three cities, Shanghai has
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Figure 2. The F1 Scores of four cities with different optimization

strategies in the development phase.

the richest diversity of buildings with respect to construc-

tion areas, heights, and architectural styles, etc. The dis-

tance between the building roof and the corresponding la-

beled polygon is large for high-rise buildings and small for

low-rise buildings. The buildings located in residential ar-

eas are much easier to be extracted correctly compared with

those located in gardens, agricultural areas and industrial ar-

eas. It’s often difficult to correctly extract the buildings with

green roofs, the low-rise buildings covered by trees, and the

tiny buildings (e.g. located in the entrance of parking lots

or gardens), etc. when only using the satellite datasets. The

utilization of Map datasets can solve these problems to a

great extent.

Khartoum has the lowest F1 Score among the four cities,

resulting from many possible reasons. For instance, most

of the public Map datasets provide little useful information

for building extraction in Khartoum. Moreover, the build-

ing areas vary greatly in Khartoum and it’s hard to decide

whether a group of neighbouring buildings should be ex-

tracted together or separately.
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Paris achieves the second highest F1 score among the

four cities. The buildings in Paris dataset are in a relatively

unified style. The buildings with green roofs and the build-

ings surrounded by forests are harder to be extracted cor-

rectly. Vegas achieves the best building extraction results

among the four cities. Most of the buildings in Vegas dataset

locate in residential areas and their architectural styles are

more unified than those of other three cities. The buildings

in countryside areas in different architectural styles and with

fewer training samples are relatively harder to be extracted

correctly.

5. Conclusions and future work

In this work, we proposed a semantic segmentation and

ensemble learning based building extraction method using

both satellite imagery and multi-source GIS map datasets.

Our proposed method achieves the overall prediction score

of 0.701 on the test dataset in the building extraction chal-

lenge.

In the future we will try more latest proposed DCNN

models, such as LinkNet [6] and SegNet [4]. Some tradi-

tional computer vision techniques can be used as comple-

mentary of DCNN for Shanghai and Khartoum datasets.
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