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Abstract

The production of thematic maps depicting land cover is

one of the most common applications of remote sensing. To

this end, several semantic segmentation approaches, based

on deep learning, have been proposed in the literature, but

land cover segmentation is still considered an open prob-

lem due to some specific problems related to remote sensing

imaging. In this paper we propose a novel approach to deal

with the problem of modelling multiscale contexts surround-

ing pixels of different land cover categories. The approach

leverages the computation of a heteroscedastic measure of

uncertainty when classifying individual pixels in an image.

This classification uncertainty measure is used to define a

set of memory gates between layers that allow a principled

method to select the optimal decision for each pixel.

1. Introduction

Land cover segmentation deals with the problem of

multi-class semantic segmentation of remote sensing im-

ages. This problem, which consists of assigning a unique

label (or class) to every pixel of an image, is particularly

difficult due to (i) the high resolution of the images and di-

versity of size of the objects, (ii) the diversity of classes and,

usually, the similarities among them, (iii) the noisy labeling

and implicit rules such as not considering small/isolated ar-

eas and (iv) data domain: the model is usually trained with

a set of images that highly differ from the target area where

it is expected to generalize and perform predictions.

In the recent literature, most of the methods solving these

problems are based on deep learning. In [6] Long et al.

popularized the use of fully convolutional networks for seg-

mentation. This method without any dense layer, allowed

to create segmentation maps for images of any size. Based

on this idea, and also trying to solve the exact alignment

problem associated with the pooling layers, several meth-

ods have been presented [2, 8, 12, 4]. U-Net [8] is a popular

architecture defined as an encoder-decoder scheme, where

in the encoder stage the spatial dimension is gradually re-

duced with pooling layers and then decoder stage gradually

Figure 1: Prediction examples from the model. Each row

is a sample, the left column is the input image and the right

column is the predicted segmentation map.

recovers the object details and spatial dimension to finally

obtain the output segmentation map. In RefineNet [4], pro-

posed by Lin et al., the ResNet architecture is used as a

encoder step while in the decoder step as a set of RefineNet

blocks which fuse high resolution features from the encoder

and low resolution features from previous RefineNet block.

In the domain of satellite images, several methods try-

ing to solve this problem in high-resolution images have

been presented [9, 10, 7, 5]. The most relevant publica-

tion for our work is Gated Convolutional Network (GCN)

[10], where the segmentation is computed from the outputs

of each block of a pre-trained ResNet, using entropy as a

gate to fine-tune the prediction at each level.

In this paper, we propose a novel method that tackles

the problem of land cover segmentation using the data and

protocol proposed by the DeepGlobe Land Cover Classifi-

cation Challenge at CVPRW [1]. Figure 1 shows two sam-

ples from the dataset and the predictions of our model. The

proposed method is built over a GCN using a ResNet ar-

chitecture and exploits the uncertainty of the predictions in

each layer. The uncertainty measure, built on the basis of

1276



the publication by Alex Kendall and Yarin Gal [3], is used

to define a set of memory gates between layers that allow

for a principled method to select the optimal decision for

each pixel.

The remainder of this paper is organized as follows. In

the next section we present the proposed method. In Section

III, we present the training setup. In Section IV, we present

the experimental results. Finally, Section IV concludes the

paper with remarks on the proposed approach.

2. Method

Our model builds upon the GCN architecture proposed

by Wang et al. in [10]. In that paper a new architecture was

proposed to combine the feature maps learned at different

blocks of a ResNet model by using memory gates instead

of more classical operations such as summation or concate-

nation. The gating mechanism was based on the relation-

ship between the information entropy of the feature maps

and the label-error map, allowing for a better feature map

integration.

To further develop the concept of gated convolutions, we

consider the use of a more principled concept: assigning a

credibility measure to each feature map. According to the

Bayesian viewpoint proposed by Alex Kendall and Yarin

Gal in [3], it is possible to characterize the concept of un-

certainty into two categories. On the one hand, if the noise

applies to the model parameters, we will refer to epistemic

uncertainty. On the other hand, if the noise occurs directly

in the observation, we will refer to it as aleatoric uncer-

tainty. Additionally, aleatoric uncertainty can further be

categorized into two more categories: homoscedastic un-

certainty, when the noise is constant for all the outputs (thus

acting as a “measurement error”), or heteroscedastic uncer-

tainty when the noise of the output also depends explicitly

on the specific input.

We propose to use a measure of heteroscedastic uncer-

tainty when classifying specific pixels as a gating mecha-

nism. In this case, we have to measure the heteroscedastic

uncertainty in a classification task, where the noise model

is placed in the logit space.

Let σi and li be two predicted vectors of unaries of di-

mension C, the number of classes, for every input pixel xi.

The latter, li, are the logits used to output a probability dis-

tribution by using a softmax, while σi aims to bound its

uncertainty. By taking T random samples of li perturbed

by σi, we can derive a stochastic loss Lx that allows the

computation of an uncertainty value γi for each xi input as

follows:

Lx =
∑

i

γi

γi = − log
1

T

∑

t

exp(l̂i,t,c − log
∑

c′

exp l̂i,t,c′)

l̂i,t ∼ N (li, σi), 1 ≤ t ≤ T

where l̂i,t,c′ is the t sampled logit vector from class c′,

and l̂i,t,c is the logit vector of the winner class for each pixel

and sample.

Our architecture is illustrated in Figure 2. As it can be

seen, an uncertainty measure γ(j) is computed after each of

the ResNet blocks gj , 0 ≤ j ≤ 4. The blocks g4 through g1
correspond to each of the original residual blocks, while g0
is composed by the first max-pooling and convolution.

The refinement process through uncertainty gates starts

by setting b̄4 = g4 and bj the upsampled version of b̄j to

match gj−1 dimensions. Then for each j = 4, .., 1 the pro-

cess of obtaining an uncertainty and segmentation is defined

as follows:

l(j) = b(j) ⊛C w
(j,1)
1x1

σ(j) = b(j) ⊛C w
(j,2)
1x1

l̂
(j)
i,t ∼ N (l

(j)
i , σ

(j)
i )

γ(j) = log
1

T

∑

t

exp(l̂
(j)
i,t,c − log

∑

c′

exp l̂
(j)
i,t,c′)

b̄j−1 = γ(j) ∗ gj−1 + bj

Where ⊛C is the convolution operator with a 1×1 kernel

and dimension C, and ∗ denotes the element-wise multi-

plication, but defined in such a way that gradient can only

flow through the ḡj operand during the backpropagation

step. If gradient is allowed to flow through γ(j) in the back-

ward pass, we can no longer talk about heteroscedastic un-

certainty, as external factors aside from pure classification

would condition them. Finally, γ(0) and L(0) is computed

in the same manner.

To compute the final segmentation, instead of taking new

logits from the last block as GCN does, it is proposed a

method that takes advantage of all logits l(j) and uncertain-

ties γ(j) calculated at each block. The final probabilities of

each pixel and class are obtained with a γ-weighted sum of

the probabilities at each intermediate step, as:

1

C

4∑

i=0

softmax(l(i)) ∗ (1− γ(i))

3. Training

To train the model, we first reduce the original resolu-

tion down to 1024 × 1024, which simplifies the problem

space while keeping enough details. The network is fur-

ther trained by taking 8 random crops, each of 250 × 250,

out of each image. Each crop is then randomly rotated and

flipped, and is further processed by adding gaussian noise

and adjusting hue, contrast and brightness.

277



Figure 2: Uncertainty gated convolutional neural net-

work. Black arrows represent weighted connections be-

tween different layers. Green arrows represent forward-

only weighted connections, where gradient flows in the

backpropagation process are not allowed.

The model is trained by minimizing, at each level j, both

L(j) and a classification loss given by a softmax crossen-

tropy between the labels and sampled unaries from the log-

its. Overall, loss is minimized with WNAdam optimizer

[11], using an standard piecewice learning rate decay for a

total of 100 epochs.

4. Results

The data for the DeepGlobe Land Cover Classification

Challenge consists of 1.146 satellite RGB images of size

2448x2448 pixels, split into training/validation/test, each

with 803/171/172 images. Each satellite image is paired

with a class labeled image using the following 7 categories:

1) Urban land; 2) Agriculture land; 3) Rangeland; 4) Wa-

ter (Rivers, oceans, lakes, wetland, ponds); 5) Barren land

(Mountain, land, rock, dessert, beach, no vegetation) and 7)

Unknown (clouds and other artifacts).

The pixel-wise mean Intersection over Union (mIoU)

score, calculated by averaging the IoU over all classes, is

used as evaluation metric. The IoU is defined as: True Posi-

tive / (True Positive + False Positive + False Negative). The

unknown class is not an active class used in evaluation.

The final model uses, as discussed in the previous sec-

tion, the ResNet with 18 layers and is trained for 100

epochs. Figure 3 shows the prediction process. Segmen-

tations at each level are generated for visualization and in-

terpretation and further combined to obtain the final result.

Deeper levels are more general and can not accurately pre-

dict each pixel, which can be both attributed to the down-

sampling process and the abstraction done through all the

convolutions. That is why upper levels refine the result

and are richer in details. In particular, it can be seen that

pixels where the output does not match the ground truth,

a high uncertainty is obtained. Averaging across all lev-

els improves the result by reducing artifacts and producing

smoother segmentation maps. The model runs inference in

real time, taking only 250ms to produce a segmentation at

full 2448 × 2448 resolution on an NVIDIA Titan X. This

architecture achieves a mIoU score of 0.485 in the final test

set of the challenge.

5. Conclusions

In this paper, an uncertainty gated convolutional neural

network has been proposed for land-cover semantic seg-

mentation. The proposed method leverages the computation

of a heteroscedastic measure of uncertainty when classify-

ing individual pixels in an image. This classification uncer-

tainty measure is used to define a set of memory gates be-

tween layers that allow for a principled method to select the

optimal decision for each pixel. The result reported on the

DeepGlobe Land Cover Classification Challenge is 0.485

mIoU on the final test set. Future improvement on the do-

main adaptation problem will be considered, since we have

observed some inconsistencies due to this specific issue.
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