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Abstract 

Semantic Segmentation of satellite images is one of the 

most challenging problems in computer vision as it 

requires a model capable of capturing both local and 

global information at each pixel. Current state of the art 

methods are based on Fully Convolutional Neural 

Networks (FCNN) with mostly two main components: an 

encoder which is a pretrained classification model that 

gradually reduces the input spatial size and a decoder that 

transforms the encoder’s feature map into a predicted 

mask with the original size. We change this conventional 

architecture to a model that makes use of full resolution 

information. NU-Net is a deep FCNN that is able to 

capture wide field of view global information around each 

pixel while maintaining localized full resolution 

information throughout the model. We evaluate our model 

on the Land Cover Classification and Road Extraction 

tracks in the DeepGlobe competition. 

1. Introduction 

Semantic segmentation of satellite imagery is used to 

extract road networks, detect buildings for urban planning 

and recognize green areas for promoting sustainable clean 

environments. This area of research has thus received 

substantial attention in last few years with significant 

progress made due to two main reasons. Firstly, the wide 

adoption of deep learning techniques that combined with 

computer vision have been successfully used in tasks such 

as image classification [1][2], object detection [3][4] and 

semantic segmentation [5]. Secondly, the accessibility to 

open source datasets with high resolution satellite images. 

 

Most current work in semantic segmentation features a 

similar neural network architecture: an encoder network 

that captures high level features in input images while 

reducing their spatial size using max pooling, and a 

decoder which restores the original image size and outputs 

the segmentation mask using upsampling or convolution-

transpose. 

                                                           
1 These authors have contributed equally. Mohamed Samy passed away 

on 20 May 2018.  

 
Figure 1: Residual Wide FoV Module Structure 

 

For instance, Long et. al. [6] developed a fully 

convolutional architecture which uses VGG16 [2] as an 

encoder and applies linear upsampling on the feature maps 

in order to predict segmentation mask. Noh et. al. [7] 

enhanced this idea by using a mirrored VGG as decoder to 

increase the nonlinearity of output layers. Ronneberger et. 

al. [8] added skip connections between encoder and 

decoder layers which resulted in the UNet architecture. 

Other work made use of advances in classification 

architecture and added residual [9] and dense connections 

[10] to increase the performance of their models.  

 

The above techniques are inspired by architectures 

designed mainly for general classification tasks and are 

hence able to successfully capture global information in an 

image. However, such design limits their performance in 

segmentation tasks since searching for information 
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globally in the image is different objective from 

segmentation that needs pixel specific information. 

 

   Developing an architecture that utilizes the full 

resolution information of input images is a logical 

alternative that can preserve local information, i.e. pixel-

level information, instead of losing it in the encoder 

network. Pohlen et. al. [11] proposed a new architecture 

that have two streams: one with full resolution features 

and one with encoder-decoder layers but with no 

pretrained weights. Both streams exchange information 

along the forward pass. The results were better than many 

models that made use of pretrained models. However, 

their work revealed disadvantages in full resolution 

architectures. For instance, significant memory 

requirements limit network depth, and series of 

convolutional layers cannot faithfully capture global 

information because of their limited field of view. 

Consequently, the authors added another encoder-decoder 

stream. 

 

In this work extend the above architecture by 

introducing NU-Net, a novel deep neural network 

architecture which utilizes full resolution as well as global 

information for improved segmentation. NU-Net features 

multiple Wide Field of View (FoV) modules and is 

inspired by PSP-Net [12]. We argue that our architecture 

achieves better results without applying any pre-

processing or post processing techniques. We describe our 

model in detail in section 2, report current results on the 

Land Cover Classification and Road Extraction datasets in 

section 3, and conclude in section 4. 

2. Proposed Method 

2.1. Residual Wide FoV Module 

This module aims at exploiting the full resolution 

information while gaining a receptive field that is large 

enough to capture the global information without losing 

local features per pixel. To design a block that achieves 

this goal, we had to keep in mind that convolutional layers 

are good at capturing local information for each pixel 

whereas max pooling helps exploiting the global 

information. 

 

The residual wide FoV module is thus designed as 

shown in Figure 1. Firstly, the input passes through a 3x3 

convolution layer. Then, there are multiple branches, each 

one has non-overlapping max pooling followed by 3x3 

convolution to capture spatial information at different 

resolutions. At the end of each branch, there is a bilinear 

upsampling layer to reverse the effect of pooling and 

restore original input resolution. To combine all branches 

and compress their information in smaller number of 

channels, their outputs are concatenated and a 1x1 

convolution layer is applied. Local information is retained 

by using a residual connection between the input and 

output feature maps of the module.  

2.2. NU-Net 

NU-Net architecture utilizes the residual wide FoV 

modules with design similar to ResNet [13]: a series of 

blocks with skip connections between their inputs and 

outputs. The architecture has k residual wide FoV modules 

preceded by a 3x3 convolution to the input image to 

produce a feature map with C channels that is followed by 

a 1x1 convolution layer to predict the segmentation mask. 

Every convolution layer in NU-Net is combined with 

batch normalization and ReLU activation except for the 

last layer in which a sigmoid function is used. 

 

Unlike other encoder-decoder architectures such as U-

Net [8] which decrease the spatial size of input feature 

maps multiple times then gradually increase them, NU-Net 

doesn’t impose traditional hierarchical learning. The 

network wide FoV modules each applies down sample 

then up sample operations which helps the architecture to 

detect fine details robustly without losing global 

information.  NU-Net network architecture utilizes a 

consecutive series of modules with each module operating 

on the output of the previous one to correct its mistakes 

and improve overall results. Furthermore, while NU-Net 

design is inspired by Pyramid Scene Parsing (PSP) [12], 

key differences exist. Unlike PSP, NU-Net uses more 

convolutional layers to increase non-linearity and exploit 

the feature maps between max pooling and upsampling by 

widening the receptive field. To this end, each position 

(pixel) in the feature map holds information of 4 pixels 

after max-pooling with 2x2 and before upsampling. By 

adding a 3x3 convolution layer before upsampling, each 

position will hold information of 4x9 positions. Such 

widening of the field of view increases horizontally with 

larger max-pooling and vertically with more modules. 

Furthermore, while PSP is applied once on feature maps of 

a pretrained network, the proposed wide FoV modules are 

applied multiple times without the need for a pretrained 

model. 

 

One of the main drawbacks of NU-Net is that it retains 

full resolution throughout the network which is 

computationally demanding. In order to alleviate this issue 

for deep versions of NU-Net, a 2x2 max-pooling layer can 

be inserted before the first wide FoV module and an 

upsampling layer after the last one. This modification 

reduces the needed computations and memory by a quarter 

without affecting prediction accuracy. We will call this the 

energy saving network mode. 
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Num. of 

residual 

wide FoV 

modules (k) 

 Local 

Validation 

First  

Stage 

Leaderboard 

Second 

Stage 

Leaderboard 

5 55% 52.6% 
- 

9 62.2% 57.1% 57.4% 

Table 1: NU-Net results on validation and leaderboard 

with different number of wide FoV modules. The 

results calculated using Jaccard coefficient on road 

extraction dataset. 

3. Experiments 

3.1. Road Extraction Track 

We evaluate our method on the Road Extraction track in 

the Deep Globe [14] competition. The dataset consists of 

more than 6000 images with size 1024x1024 with 50 cm 

resolution per pixel. The masks are mixture of street roads 

and small trails taken in different environments such as 

urban, rural and desert areas. Such variability makes the 

problem more challenging.  

 

Through the competition, the evaluation metric used 

was Jaccard coefficient which is 

 
 

 

 

 

where TP is number of true positive pixels, FP is the 

number of false positive pixels and FN is the number of  

false negative pixels in a single image. The metric is 

applied to each image separately and the average results is 

calculated. 

 

 In our experiments, the dataset was divided into 

training and validation with 75% and 25% of images 

respectively. The validation set was used to choose the 

best epoch for leaderboard submission. We applied NU-

Net with different number of residual wide FoV modules 

(k) to investigate the effect of network depth on overall 

performance. The number of filters used in all layers is 64 

and the models were trained with soft dice loss defined as: 

 
where yi and pi are the ground truth and predicted 

probability, respectively, for pixel i. Data augmentation 

was applied using flipping, rotation and random erosions. 

 

Table 1 shows the results with k = 5 and 9 on both 

validation and leaderboard sets. For k = 9, we used the 

network energy saving mode. It is observed that the local 

validation score increased from 55% to 62.1% while the 

score on the first stage leaderboard increased from 52.6% 

to 57.1% after increasing the model depth. Our best two 

submissions on the final leaderboard was NU-Net with k = 

9 which scored 57.4% and an ensemble of two versions of 

the same model which scored 57.8%. 

Figure 2: Examples for NU-Net Road Extraction results versus true masks. First column has the original 

images, second column has the true masks and third column has NU-Net predictions. 
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Figure 2 shows some prediction examples of NU-Net 

versus the true masks in the local validation set. We can 

see clearly that our model is able to capture roads that 

were not labeled in the ground truth mask. 

3.2. Land Cover Classification Track 

For the Land Cover Classification track, the dataset 

consisted of 803 images of size 2448x2448. Each image 

pixel belongs to one of seven classes: Urban, Agriculture, 

Rangeland, Forest, Water, Barren land, and Unknown. The 

Unknown class is not used in the evaluation. The 

evaluation metric is the Mean Intersection over Union  

(MIoU) where the IoU for each class is calculated 

separately for all images and the mean IoU for the six 

classes is reported as the final metric. 

 

The data is divided into 75% training and 25% 

validation similar to the Road Extraction track. We used 

the same NU-Net architecture with k = 9 and replaced the 

final layer to output seven classes. The pretrained weights 

of the Road Extraction track are used to help the network 

converge faster. The model was trained with weighted 

cross entropy loss defined as: 

 
where wc is the weight for class c and yi,c and pi,c are the 

true label and the predicted probability for class c at pixel i 

respectively. The weight of each class is the inverse of 

class percentage in the training batch which reduces the 

effect of class imbalance. 

 

 

 

The best achieved MIoU on the local validation set is  

70% and on the second leaderboard the score is 38.4%. 

We investigated the gap between local validation score 

and leaderboard score and we found multiple reasons for 

this discrepancy. Images in the test set have sharper colors 

than those in the training set. In addition, the test set are 

captured on a lower altitude which makes shadows more 

visible compared to the training set. In order to lower the 

effect of these differences, we used Adaptive Batch 

Normalization [15] which increased our leaderboard score 

to 42.8% without re-training the model. Figure 3 shows 

some examples of NU-Net predictions on local validation 

set. 

4. Discussion 

In this work, we introduced NU-Net, a novel 

convolutional neural network architecture for semantic 

segmentation of satellite imagery. Our model utilizes large 

receptive fields to extract global information while 

preserving the spatial size to make use of local 

information for enhanced segmentation. As a future work, 

extensive study is needed for NU-Net parameters and its 

effect on the overall performance. 
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Figure 3: Examples for NU-Net Land Cover results versus true masks. First column has the original images, 

second column has the true masks and third column has NU-Net predictions. 
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