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Abstract

In order for a robotic agent to learn successfully in an

uncontrolled environment, it must be able to immediately al-

ter its behavior. Deep neural networks are the dominant ap-

proach for classification tasks in computer vision, but typ-

ical algorithms and architectures are incapable of immedi-

ately learning new tasks without catastrophically forgetting

previously acquired knowledge. There has been renewed

interest in solving this problem, but there are limitations to

existing solutions, including poor performance compared

to offline models, large memory footprints, and learning

slowly. In this abstract, we formalize the continual learn-

ing paradigm and propose new benchmarks for assessing

continual learning agents.

1. Introduction

When working in uncontrolled environments, robots

must quickly alter their behavior to learn and adapt in real-

time. Deep neural networks (DNNs) are the current state-

of-the-art method for machine perception, but they are in-

capable of learning new instances immediately. Learning

requires looping over a dataset, which requires a consid-

erable amount of time. Moreover, if streams of instances

are not independent and identically distributed (iid), then a

conventional DNN will suffer from catastrophic forgetting

of previously learned information [4]. In contrast, a robot

frequently may encounter non-iid streams of labeled data,

e.g., when it is learning to recognize a particular object in

its environment. In continual learning, sometimes known

as streaming learning, an algorithm must be able to imme-

diately make inferences from new examples, and must have

the ability to learn from non-iid data streams. Here, we

formalize the continual learning paradigm and describe ap-

propriate performance metrics.

As shown in Fig. 1, we distinguish between incremen-

tal batch learning and continual learning. In incremental

batch learning, a learner sequentially observes a labeled

training dataset D broken up into T individual batches that

cannot be assumed to be iid , i.e., D =
⋃

T

t=1
Bt. Each
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Figure 1. (a) In incremental learning, an agent learns from non-iid

batches of data containing a particular task, e.g., a single class in

incremental class learning. The agent may observe the batch until

it finishes learning it, but subsequently, it will never see that data

again. In this example, each batch is denoted by a gray box con-

taining a single class/task. (b) Conversely, in continual learning,

as defined here, an agent is required to immediately learn non-iid

data streams sample-by-sample, and the agent only has one look

at each example. Continual learning more closely matches ani-

mal learning, and is required for deployed agents that must learn

immediately.

batch Bt consists of Nt labeled training data points, i.e.,

Bt = {(xi, ki)}
Nt

i=1
, where xi ∈ R

d is a training sample

and ki ∈ C is a discrete label. The model is only permitted

to learn from batches sequentially, in order, i.e., at time t it

only has access to Bt. This paradigm is popular in the lit-
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erature, and it was used to evaluate many recent algorithms,

e.g., EWC [9], iCaRL [12], PathNet [3], FearNet [7], etc.

Continual learning, as defined here, is incremental learning

with an additional constraint that Nt = 1 (each batch con-

tains a single example), each batch may only be observed

once (a single epoch), and the model may be evaluated at

any time. None of the aforementioned algorithms can oper-

ate in this continual learning paradigm.

In a real-world setting, robots must be capable of adapt-

ing to their environment quickly, efficiently, and reliably.

It is unrealistic to provide an agent with every scenario it

may encounter in an offline setting since this would require

a significant amount of training time and data. Ideally, an

agent would be capable of learning about, and adapting to,

changes in its environment in real-time. These changes in-

clude appearance changes of objects or background scenery

(e.g., seasonal changes) or examining new classes of objects

that had not been previously observed. Continual learn-

ing addresses exactly these problems by forcing an agent

to learn on a sample-by-sample basis in real-time, while

also not catastrophically forgetting previously learned in-

formation. An agent is implicitly required to use its exist-

ing knowledge to make inferences about new situations and

environments.

Continual learning is analogous to how animals learn

and use knowledge, i.e., training examples must be learned

sequentially (one-by-one), they are not assumed to be iid,

there is no guarantee that an example can be observed more

than once, the learner can be tested at any time, and mem-

ory resources must be independent of the size of the training

dataset. Creating models capable of overcoming these con-

straints is necessary for developing advanced algorithms in

embedded agents and robotics that must learn in real-time

and are often resource constrained.

Continual learning more closely matches the require-

ments of a robotic learner. That is, the agent is only exposed

to a single training example at any given time and only has

one look at that example. Additionally, the agent must be

capable of making inferences about its non-iid environment

given existing knowledge, since it cannot simply store all

previous training examples. For example, a robot may ob-

tain multiple views (images) from a single instance of class

A, then more views from another instance of class A, before

finally learning instances from a class B, etc.

In this abstract, we describe experiments and metrics for

testing a continual learner. These paradigms will enable

new algorithms to be better compared and evaluated.

2. Evaluating Fast Continual Learning

2.1. Experimental Paradigms

We describe three paradigms for evaluating continual

learning models: the data stream is completely unordered

(iid), the data stream is ordered by class, and the data stream

is temporally organized by instances. In all three paradigms,

during training the model is required to learn on a sample-

by-sample basis and is only allowed one epoch through the

entire randomly sorted training set. It is evaluated every n

samples and it does not know the value of n.

Learning iid Data Continually. The first continual learn-

ing experiment evaluates a continual learner’s ability to

learn quickly, without the need to compensate for non-iid

data streams. While this is not a realistic scenario for a

robot, this scenario should be the easiest for a continual

learning model to rival an offline learner. It assumes that

data is iid, with the data arriving in a randomly shuffled

stream. In this scenario, it is typical for continual learning

models to still perform worse than offline learners, making

it a basic test for the model’s abilities.

Learning Class Data Continually. The second paradigm

tests the model’s ability to learn new classes incrementally.

This experiment will cause catastrophic forgetting in a con-

ventional DNN, and even methods that are purported to be

robust to catastrophic forgetting [8]. To assess model per-

formance, test accuracy will be computed at regular inter-

vals on data belonging to all previously observed classes.

In this scenario classes are not revisited, which is the as-

sumption that many other models make, e.g., iCaRL [12].

Learning Organized non-iid Data Continually. The fi-

nal continual learning experiment measures each model’s

performance in the most realistic setting and differs signif-

icantly from previous training procedures. Data is ordered

in batches from specific instances of particular categories

and categories can be re-visited, e.g., 100 labeled images of

dog #1, followed by 50 images of cat #2, followed by 200

images of cat #3, 83 labeled images of dog #4, etc. This is

illustrated in Fig. 1(b). This scenario closely matches how

a robot would experience stimuli, i.e., it would see multiple

instances of a particular object and then it may not see that

object class or instance again for a while. This scenario will

cause catastrophic forgetting in conventional methods. To

assess model performance, accuracy is computed at regular

intervals on all test data.

2.2. Performance Metrics

Evaluating continual learning means evaluating the abil-

ity for a learner to learn quickly from non-iid data streams.

It also means closely measuring the learner’s memory us-

age, since one way to learn quickly is to simply store all

training data as it is observed, which is impractical for a

robot that is deployed for a long duration. In earlier work,

Kemker et al. introduced new metrics for measuring mem-
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ory stability, plasticity, and overall performance in incre-

mental batch learning [8], and these metrics can be applied

to continual learning. Overall performance of a continual

learning method is given by:

Ωall =
1

T

T∑

t=1

αall,t

αoffline,t

, (1)

where αall,t is the accuracy on all of the test data seen at

test time t, αoffline,t is the accuracy of the optimized offline

iid model on all of the training data until time t, and T de-

notes the total number of testing events. This metric enables

an incrementally trained algorithm to be compared relative

to an offline trained algorithm, with an Ωall = 1 indicat-

ing identical performance. Hypothetically, it is possible for

Ωall > 1 if the offline model is worse than the one trained in

the continual learning paradigm. For an offline learner, we

recommend using heavily optimized and regularized state-

of-the-art neural networks (e.g., ResNet [6]). In addition

to the Ωall metric, the amount of memory used by a model

should also be reported as a function of time.

Since each of these experimental paradigms is formu-

lated based on the organization of the data seen by the

agent, we recommend running each experiment multiple

times with different permutations of the dataset. The mean

and standard deviation of the results over different permuta-

tions would then be reported to demonstrate a model’s con-

sistency and robustness to changes in ordering of the data.

2.3. Continual Learning Datasets

Two of the largest datasets for continual learning exper-

iments are iCubWorld Transformations (iCub-T) [11] and

CORe50 [10]. Both of these datasets are object recognition

datasets designed specifically for continual learning with

images generated from a sequence of frames of a person

moving each object around. These datasets are ideal for

evaluating continual learning because the data comes from

particular instances in bursts while a robot is viewing that

object. After seeing a burst of images from a particular in-

stance, the agent then learns from another burst. It is natu-

rally non-iid.

Both of these datasets only contain tens of classes of

common household objects, which demonstrates a lack of

size and diversity. To push the forefront of continual learn-

ing technology, we argue that improvements must be made

to the existing continual learning datasets to make the train-

ing and testing of agents more robust and generalizable.

3. Baseline Experiments

We evaluated four continual learning algorithms: In-

cremental 1-Nearest Neighbor (1NN), biased ARTMAP

(bARTMAP) [1], GeppNet [5], and an online multi-layer

perceptron (MLP) by comparing them to a small offline

MLP neural network. Results for the three paradigms on

Method iid class organized non-iid

MLP 0.881 0.308 0.255

1NN 0.836 0.894 0.863

bARTMAP [1] 0.787 0.898 0.800

GeppNet [5] 0.832 0.757 0.694

Offline (Ideal) 1.000 1.000 1.000

Table 1. Ωall metrics computed for each of the streaming classifi-

cation experiments on iCubWorld 1.0 [2]. Note that bARTMAP

and GeppNet are not conventional DNNs.

the small iCub World 1.0 dataset [2] using ResNet-50 [6]

embeddings are shown in Table 1. No algorithm reaches the

performance of the ideal learner, even on this easy dataset,

demonstrating the difficulty the continual learning problem

poses for existing models.

4. Conclusion & Open Questions

While DNNs have become increasingly popular for solv-

ing a wide variety of problems, there are still many limita-

tions to using these systems. Modern DNNs are known to

suffer from catastrophic forgetting and cannot be trained in

a continual learning framework for ease of use on embed-

ded platforms. In this abstract, we provided explicit defini-

tions for, and defined the difference between, incremental

batch learning and continual learning. Additionally, we in-

troduced three continual learning experimental paradigms

and made recommendations for existing datasets and evalu-

ation metrics that could be used to evaluate continual learn-

ing agents.

One major issue in continual learning is that datasets are

too small. It is critical for future work to make datasets

larger (hundreds to thousands of classes) and more diverse

(different types of recognition, e.g., face, scene, activity).

One interesting idea would be to create a dataset that con-

tains classes/tasks in the test set that a model has never seen

before. A model should then be able to indicate that it has

not seen that class before.

While the iCub-T and CORe50 datasets are good for

proof of concept models, results on these datasets are un-

likely to indicate performance in a natural environment. For

now, we recommend using iCub-T or CORe50, but ide-

ally continual learning agents should be validated on much

larger and diverse datasets.

Overcoming the constraints of continual learning would

encourage the development of agents necessary for improv-

ing robotic vision. These capabilities would allow agents to

learn from non-iid, temporally organized data streams, con-

tinuously learn and adapt to changes over time, and would

have improved computational and memory efficiency.
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