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1. Introduction

Objects are a fundamental component of visual percep-

tion. How are humans able to effortlessly reorganize their

visual observations into a discrete set of objects is a ques-

tion that has puzzled researchers for centuries. The Gestalt

school of thought put forth the proposition that humans

use similarity in color, texture and motion to group pixels

into individual objects [21]. Various methods for object

segmentation based on color and texture cues have been

proposed [3, 6, 7, 14, 16]. These approaches are, however,

known to over-segment multi-colored and textured objects.

The state of the art overcomes these issues by making

use of detailed class-specific segmentation annotations for

a large number of objects in a large dataset of images to get

impressive results on segmenting objects in web images [10,

12,19]. A typical system in this paradigm first makes use of

1M human annotated images in ImageNet [20] to pretrain a

deep neural network. This network is then finetuned using

over 700K object instances belonging to eighty semantic

classes from the COCO dataset. Such data is laborious and

extremely time consuming to collect.

In this work, we take the first step towards putting this

developmental hypothesis to test and investigate if it is pos-

sible for an active agent to learn class agnostic instance

segmentation of objects by starting off with two axioms:

(a) there are objects in the world; (b) principle of common

fate [21], i.e. pixels that move together, group together. To

that end, we set up an agent, shown in Figure 1, to inter-

act with its environment and record the resulting RGB im-

ages. The agent maintains a belief about how images can

be decomposed into objects, and actively tests its belief by

attempting to grasp potential objects in the world. Through

such self-supervised interaction, we show that it is possi-

ble to learn to segment novel objects kept on textured back-

grounds into individual instances. We will publicly release

the collected data (i.e. over 50K interactions recorded from
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four views) along with a set of 1700 human labelled images

containing 9.3K object segments to serve as a benchmark

for evaluating self-supervised, weakly supervised or unsu-

pervised class agnostic instance segmentation method.

An interesting technical challenge we encountered is that

the object masks discovered through interaction are noisy

compared to the object masks marked by human annotators.

For instance, sometimes the agent may mistakenly think of

two nearby objects as one object. This requires the training

to be robust to label noise, analogous to how in regression,

we need to be robust to outliers in the data. We developed a

technique, “robust set loss”, to handle this during the train-

ing, with the general idea being that the segmenter is not

required to predict exactly the pixels in the candidate object

mask, rather that the predicted pixels as a set have a good

Jaccard index overlap with the candidate mask.

Related Work In the past, active perception [2, 4, 5, 9]

has garnered a lot of interest. However, much of this work

is concerned with using interaction to segment a specific

scene [8,11,15]. In contrast, our system uses interactions to

actively gather supervision to train a segmentation system

that can be used to segment objects in new images. Instead

of using interaction with the environment, the work of [17]

used optical flow to generate pseudo ground truth masks

from passively observed videos. As far as we are aware,

ours is the first work that aims to learn to segment objects

using self-supervision from active robotic interaction.

2. Experimental Setup

The basic interaction primitive used by the robot allows

it to attempt to pick and place objects in the scene. We set

up the robot to interact autonomously with its environment

without human supervision. Overall, the robot performed

more than 50,000 interactions with its environment. Ap-

proximately the first 15,000 interactions were recorded us-

ing the main camera and the remainder of interactions were

recorded using auxiliary four cameras. Data recording from
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Figure 1. (a): Overview of our approach: a robot conducts experiments in its environment to learn a model for segmenting its visual

observation into individual object instances. Our robot maintains a belief about what groups of pixels might constitute an object and

actively tests its belief by attempting to grasp this set of pixels (for e.g. attempts a grasp at the location shown by the yellow circle).

Interaction with objects causes motion, whereas interaction with background results in no motion. This motion cue is utilized by the

robot to train a deep neural network for segmenting objects. (b),(c): Visualization of the set of thirty six objects used for training (b) and

sixteen objects used for testing (c). Validation objects can be seen in supp. materials. Separate sets of backgrounds were used for training,

validation and testing.

four cameras was used to increase invariance to viewpoint.

Datasets: We use 24 backgrounds for training, 6 for val-

idation and 10 for testing. We use 36 different objects for

training, 8 for validation and 15 for testing. The valida-

tion set consisted of 30 images (5 images per background)

and the test set consisted of 50 images (5 images per back-

ground). We manually annotated object masks in these im-

ages for the purpose of evaluation; no labels for training.

3. Instance Segmentation by Interaction

The training procedure is summarized in Algorithm 1.

The major challenge in training a model with such self-

generated masks is that they are far from perfect (Figure 1).

Typical error modes include: (a) false negatives due to com-

plete failure to grasp an object; (b) failure in grasping that

slightly perturb the object resulting in incomplete masks;

(c) in case two objects are located near each other, pick-

ing one object moves the other one, resulting in masks that

span multiple objects; (d) erroneous masks due to varia-

tion in lighting, shadows and other nuisance factors. Any

method attempting to learn object segmentation from in-

teraction must deal with such imperfections in the self-

generated pseudo ground truth masks.

3.1. Robust Set Loss

Attempting to exactly fit the noisy masks is adversarial

for the learning process, as (a) overfitting to noise would

hamper the ability to generalize to unseen examples, and (b)

inability to fit noise would increase variance in the gradients

and thereby make training unstable.

The principled approach of learning with noisy training

data is to use a robust loss for mitigating the effect of out-

liers. Robust loss functions have been extensively studied in

Algorithm 1: Segmentation by Interaction

1 Pre-train network with passive unsupervised data

2 for iteration t = 1 to T do

3 Record current observation It
4 Generate object hypothesis: { st1, . . . s

t
K } ⇐

CNN(It)
5 Randomly choose one hypothesis

stj ∈ { st1, . . . s
t
K }

6 Interact with hypothesized object (move(stj))

7 Record observation It+1

8 mask ⇐ frame difference(It, It+1)

9 if mask is empty then

10 {(x,y), mask, It} is negative training example

11 else

12 {(x,y), mask, It} is positive training example

13 end

14 if t % update interval == 0 then

15 Update CNN using positive/negative examples

16 end

17 end

statistics, in particular, Huber loss [13] applied to regression

problems. However, such ideas have mostly been explored

in the context of regression and classification for modeling

independent outputs. Unfortunately, segmentation mask is

a “set of pixels”, where a statistic of interest such as the

similarity between two sets of pixels (e.g., ground-truth and

predicted masks) measured for instance using Jaccard In-

dex (i.e., intersection over union (IOU)) depends on all the

pixels. The dependence of the statistic on a set of pixels

makes it non-trivial to generalize ideas such as Huber loss

in a straightforward manner. We formulate Robust Set Loss
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(a) Performance vs. Interactions
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(c) Precision vs. Recall

Figure 2. Quantitative evaluation of the segmentation model on the held-out test. (a) The performance of our system measured as mAP

at IoU of 0.3 steadily increases with the amount of data. After 50K iterations our system significantly beats GOP tuned with domain

knowledge (i.e. GOP-Tuned; section ??). (b) The efficacy of experimentation performed by the robot is computed as the recall of ground

truth objects that have IoU of more than 0.3 with the group of pixels that the robot believes to be objects. The steady increase in recall

at different precision threshold shows that the robot learns to perform more efficient experiments with time. (c) Precision-Recall curves

re-confirm the results.

(RSL) to deal with “set-level” noise. The key insight is to

impose a soft constraint for only matching a subset of target

pixels while ensuring that (potentially non-differentiable)

some metric of interest, such as IOU, between the predic-

tion and the noisy target is greater than or equal to a certain

threshold. We generalize the CCNN constrained formula-

tion proposed in Pathak et. al. [18] to achieve this loss.

Please refer to full paper for the details of RSL 1.

3.2. Bootstrapping via Passive Self-Supervision

Without any prior knowledge, the agent’s initial beliefs

about objects will be arbitrary, causing it to spend most

of its time interacting with the background. This process

would be very inefficient. We address this issue by as-

suming that initially our agent can passively observe ob-

jects moving in its environment. For this purpose we use a

prior robotic pushing dataset [1] that was constructed by a

robot randomly pushing objects in a tabletop environment.

We apply the method of [17] to automatically extract masks

from this data, which we use to pre-train our ResNet-18

network (initialized with random-weights). Note that this

method of pre-training is completely self-supervised.

4. Results and Evaluations

We compare the performance of our method against

a state-of-the-art bottom up segmentation method called

Geodesic Object Proposals (GOP [16]), and a top-down in-

stance segmentation method trained in a class agnostic man-

ner using over 700K strongly supervised masks obtained

from the COCO dataset (DeepMask [19]) and pre-trained

on 1M ImageNet, using the AP at IOU 0.3 metric on the

held-out testing set as shown in Figure 2(a). Our system sig-

nificantly outperforms vanilla GOP and GOP with domain

1Full paper available at https://pathak22.github.io

Method Property AP at IU 0.3 AP at IU 0.5

GOP Bottom up 07.4 05.6

GOP (tuned) Bottom up 24.3 20.7

DeepMask Strong Sup. 44.5 34.3

DeepMask (tuned) Strong Sup. 61.8 47.3

Ours Self-sup. 44.1 20.2

Ours+Human Semi-sup. 47.0 25.1

Ours+Robust Set Loss Self-sup. 48.7 24.6

Table 1. Quantitative comparison of our method with bottom-

up (GOP [16]), learned top-down (DeepMask [19]) segmentation

methods and optimization without robust set loss on the full test

set. Note that our approach significantly outperforms GOP, but is

outperformed by DeepMask that uses strong manual supervision

of 700K+ COCO segments and 1M ImageNet images. Adding

approx. 1500 images with clean segmentation masks improves

performance of our base system.

knowledge (tuned). These results are re-confirmed by the

precision-recall curves shown in Figure 2(c). The perfor-

mance of our system steadily increases with the amount of

data and from the performance curve (see Figure 2(a)). Our

method performs similar to vanilla DeepMask, but worse

than the one tuned to our domain for scaling and position

of objects. This result is significant because DeepMask was

trained with perfect ground truth segmentation masks for

700K COCO objects after being pre-trained to classify 1M

imagenet images, whereas our system was trained using im-

perfect masks (section 3) using only 50K self-supervised

active interactions after pre-training with approximately

60K passive observations of moving objects. AP evalua-

tion at IOU 0.5 (see Table 1) reveals that while our method

significantly outperforms GOP, it is outperformed by Deep-

Mask. We believe the main reason is that the masks ob-

tained by robot interaction are imperfect. Refer to full paper

more results and generalization1.
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[10] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Simul-

taneous detection and segmentation. In ECCV, 2014. 1

[11] K. Hausman, D. Pangercic, Z.-C. Márton, F. Bálint-

Benczédi, C. Bersch, M. Gupta, G. Sukhatme, and M. Beetz.

Interactive segmentation of textured and textureless objects.

In Handling Uncertainty and Networked Structure in Robot

Control. Springer, 2015. 1

[12] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn.

arXiv preprint arXiv:1703.06870, 2017. 1

[13] P. J. Huber. Robust estimation of a location parameter. The

annals of mathematical statistics, 1964. 2

[14] P. Isola, D. Zoran, D. Krishnan, and E. H. Adelson. Crisp

boundary detection using pointwise mutual information. In

European Conference on Computer Vision, pages 799–814.

Springer, 2014. 1

[15] J. Kenney, T. Buckley, and O. Brock. Interactive segmenta-

tion for manipulation in unstructured environments. In ICRA,

2009. 1
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