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Abstract

It is unknown what kind of biases modern in the wild

face datasets have because of their lack of annotation. A di-

rect consequence of this is that total recognition rates alone

only provide limited insight about the generalization abil-

ity of a Deep Convolutional Neural Networks (DCNNs). We

propose to empirically study the effect of different types of

dataset biases on the generalization ability of DCNNs. Us-

ing synthetically generated face images, we study the face

recognition rate as a function of interpretable parameters

such as face pose and light. The proposed method allows

valuable details about the generalization performance of

different DCNN architectures to be observed and compared.

In our experiments, we find that: 1) Indeed, dataset bias has

a significant influence on the generalization performance of

DCNNs. 2) DCNNs can generalize surprisingly well to un-

seen illumination conditions and large sampling gaps in the

pose variation. 3) Using the presented methodology we re-

veal that the VGG-16 architecture outperforms the AlexNet

architecture at face recognition tasks because it can much

better generalize to unseen face poses, although it has sig-

nificantly more parameters. 4) We uncover a main limita-

tion of current DCNN architectures, which is the difficulty

to generalize when different identities to not share the same

pose variation. 5) We demonstrate that our findings on syn-

thetic data also apply when learning from real-world data.

Our face image generator is publicly available to enable the

community to benchmark other DCNN architectures.

1. Introduction

Deep face recognition systems [32, 30, 24] have

achieved remarkable performances on large scale face

recognition datasets such as Labeled Faces in the Wild [17]

or Megaface [21] in the recent years. However, the precise

limitations of face recognition systems is unclear, since a

fine-grained annotation of nuisance transformations, such

Figure 1: Importance of annotated datasets for diagnosing

deep face recognition systems. Left: In the wild data does

not permit any analysis of the generalization ability that

goes beyond the total recognition rate. Right: Our proposed

synthetic face image generator enables a detailed analysis

of the recognition score as a function of the most relevant

nuisance transformations, such as the face pose, illumina-

tion conditions, facial expressions and dataset bias.

as the face pose or the illumination conditions is practically

unfeasible on such large scale datasets. In addition, this

lack of annotation makes it difficult to analyze if certain

limitations are caused by properties of a particular DCNN

architecture or simply by a bias in the data.

We propose to overcome this lack of transparency by

evaluating face recognition systems on synthetic face im-

ages that are generated with a parametric 3D Morphable

Face Model [3]. In particular, we introduce a face im-

age generator that can create ground-truth face recognition
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datasets with a fine-grained control over parameters that de-

fine the facial identity, such as shape and texture, but also

over nuisance parameters, such as light, camera and face

pose (Figure 1). We propose to make use of these fully

annotated datasets for the empirical analysis of common

DCNN architectures at the task of face recognition on a

common ground. Our main contributions are:

• A fully parametric face image generator based on a

3D Morphable Face Model that synthesizes naturally

looking face images with precise annotation of the

main sources of image variation. Our face image gen-

erator is publicly available.

• A methodology for the systematic empirical analysis

of DCNN architectures at the task of face recognition.

Thereby, we introduce different kinds of biases in the

training data and compare the generalization perfor-

mance of different DCNN architectures on unbiased

test data.

• We find several interesting properties about the gener-

alization ability of DCNNs at the task of face recogni-

tion, which we summarize in the following:

i) DCNNs can generalize surprisingly well to incoming

light from previously unobserved directions, even if it in-

duces strong changes of the facial appearance (Section 4.2).

ii) It is well known that DCNNs with the VGG-16 architec-

ture can generalize better than with the AlexNet architecture

at face recognition tasks. Using the presented methodol-

ogy we reveal that VGG-16 outperforms AlexNet, because

it can much better generalize to unseen face poses, although

it has significantly more parameters. (Section 4.2-4.4). iii)

If large variations of the yaw pose are not reflected in the

training data, then DCNNs do not recognize faces in large

yaw poses at test time (Section 4.2). iv) In a real world sce-

nario, not all identities in the training data share the same

pose and illumination settings. We simulate this setting and

observe that DCNNs have major difficulties in generalizing

when different identities do not share the same pose vari-

ation in the training data (Section 4.3). v) When training

DCNNs on real data we observe similar generalization pat-

terns as on our synthetically generated data (Section 4.4).

The paper is structured as follows: We discuss related work

in Section 2 and introduce our face image generator in Sec-

tion 3. We evaluate the generalization ability of different

DCNN architectures under biased training data in Section 4.

We conclude our work and discuss caveats in Section 5.

2. Related Work

Comparison of DCNN architectures. Chatfield et al.

[5] compare different DCNN architectures on a common

ground and found that deep architectures achieve superior

performance to shallow architectures given extensive data

augmentation. Mehdipour et al. [22] compare the VGG-

face network [24] with the lightend CNN [34] on several

face datasets for which nuisance transformations such as

pose variation or illumination changes were labeled. Their

evaluation revealed that VGG-face achieves superior perfor-

mance over the lightend CNN at most datasets. However,

their diagnosis is limited by the fact that publicly available

datasets only provide labels for a subset of all relevant nui-

sance transformations. In addition, pose transformations are

mostly limited to changes in the yaw pose and are only sam-

pled very roughly. The authors of [27] evaluate several DC-

NNs at face recognition with respect to the influence of the

size of the dataset as well as false labeling. However, it is

difficult to interpret their results as they also have not taken

into account the dependence between the different nuisance

transformations. Karianakis et al. [20] empirically study the

influence of scale and location nuisances on the generaliza-

tion ability of DCNNs at the task of object recognition and

find that DCNNs can become invariant to these nuisances

when learned from large datasets.

In this work, we study complex nuisance transformations

such as 3D pose as well as illumination variations. In ad-

dition, we analyze the dependence between nuisance trans-

formations and the effect of different sampling intervals of

those transformations on the generalization performance.

Furthermore, we evaluate the influence of biases in the sam-

pling of nuisance transformations on the generalization per-

formance of different DCNN architectures, such as e.g. bi-

ases to frontal face poses.

Evaluation of Deep Learning theories. Recently, theories

have been developed to support the understanding of the

internal mechanisms in deep learning systems in terms of

symmetry regularization [1] and the information bottleneck

[31]. Especially for the task of image analysis, several ap-

proaches have been proposed to encode symmetries of data

points w.r.t. transformations directly into the network struc-

ture, such as e.g. in Group Equivariant Networks [8], Deep

Symmetry Networks [11], Transforming Autoencoders [16]

or Capsule Networks [28]. However, in order to evaluate

the validity of these approaches it is of central importance

to have full control over the transformation symmetries in

realistic data. Our work in this paper enables such a de-

tailed evaluation by providing full parametric control over

variations in shape, pose, appearance and the illumination

in face images.

Diagnosis of computer vision with simulated data. Syn-

thetic datasets have been proposed for the evaluation of

computer vision tasks such as optical flow [4], autonomous

driving systems [6], object detection [15], pose estimation

[23, 18] or for pre-training DCNNs [10]. Qiu and Yuille

[33] developed UnrealCV, a computer graphics engine for

the diagnosis of computer vision algorithms at scene analy-
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Figure 2: Experimental setup for our empirical analysis of the effect of biased training data on the generalization ability of

different DCNN architectures. (I) We generate synthetic identities with a 3D Morphable Face Model and render them in dif-

ferent poses and illumination conditions. We simulate background variation by overlaying the faces on different textures. (II)

We bias the training data by removing certain viewpoints from the training set. (III) We train common DCNN architectures

on the biased training data. (IV) The annotation of the test data makes possible to analyze the recognition rate as a function

of the face pose. It provides fine-grained information about the generalization ability of the different DCNN architectures.

sis. Their experiments reveal a large variation of the recog-

nition performance of DCNNs at object detection across

different viewpoints. In this paper, we take a similar ap-

proach to face recognition. In addition to leveraging com-

puter graphics for face image generation, our data generator

also enables the statistical variation of face shapes and tex-

tures which is learned from a population of 3D face scans.

Face datasets with labeled nuisance transformations.

Several face databases are available with labeled nuisance

transformations such as illumination variations in the CMU

Multi-PIE [14] and Extended Yale [12] databases or pose

variations in the Color FERET [25] database. However,

theses datasets are of very small scale compared to modern

in the wild databases and the sampling intervals along dif-

ferent transformations are coarse. Recently, Kemelmacher-

Shlizerman et al. [21] presented Megaface, a database with

690K identities and large scale pose annotations for in

the wild faces. They demonstrate the importance of large

amounts of ”distractors”, people who are not in the training

set, on the performance of face recognition systems. How-

ever, the poses in Megaface are estimated from detected

landmark positions, thus it is unclear how accurate these an-

notations are. Furthermore, the illumination conditions are

not labeled and the number of training images per identity

is rather small. Our simulation approach is complementary

to current face recognition datasets, since it enables a fully

controlled composition of training and test datasets. In par-

ticular, it makes possible to vary nuisance transformations

in fine intervals, to arbitrarily scale the number of identities,

as well as the number of training images per identity, in the

training and test set.

3. Face Image Generator

We propose to use a fully parametric generator for the

synthesis of face images with detailed annotation of the

most relevant nuisance transformations. Our generator is

based on a 3D Morphable Model [3] of face shape, color

and expression. In particular, we use the Basel Face Model

2017 (BFM-2017) [13] which is learned from 200 neutral

face scans and 160 expression deformations. The shape and

color models are parametrized with 199 principal compo-

nents each, the expressions are parametrized with 100 prin-

cipal components. Natural looking, three dimensional faces

with expressions can be generated by sampling from the sta-

tistical distribution of the model.

Using computer graphics we generate a 2D image from a

3D face, sampled from the model. We use a pinhole camera

model as well as a spherical harmonics based illumination

model [26, 2]. We represent the illumination as an envi-

ronment map and approximate it with the first three bands

of spherical harmonics, leading to 27 illumination parame-

ters, 9 per color channel and use the prior introduced in [9].

We use a non-parametric background model that chooses

random background textures from the data provided in the

describable texture database [7]. The face image genera-

tor is built on the scalismo-faces software framework [29].

The generator is publicly available 1. The generator makes

possible to generate infinite amount of face images with de-

tailed labeling of the most relevant sources of image vari-

ation. Example images synthesized from the generator are

1https://github.com/unibas-gravis/

parametric-face-image-generator
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illustrated in Figure 2. The fine-grained control over the

data enables us to systematically analyze different DCNN

architectures on a common ground at the task of face recog-

nition in the next section.

4. Experiments

In this section, we demonstrate the importance of having

fine-grained control over the image variation in the train-

ing and test dataset. In particular, it enables us to decom-

pose the total recognition rate (TRR) as a function along the

axis of nuisance transformations. With this tool at hand, we

study how biases in the training data, such as e.g. missing

viewpoints of a face or unobserved illumination conditions,

affect the generalization of DCNNs to unseen data at test

time.

We describe the experimental setup in the following Sec-

tion 4.1. In Section 4.2, we analyze the generalization per-

formance of DCNNs if nuisance transformations are only

partially observed at training time. In Section 4.3, we test

the ability of DCNNs to disentangle image variations in-

duced by nuisance transformations from identity changes.

Section 4.4 demonstrates that the generalization patterns we

observe on synthetic data can also be observed when train-

ing on real data.

4.1. Experimental Setup

Figure 2 schematically illustrates our experimental

setup. We generate synthetic images of different facial iden-

tities and transform them along the axes of the nuisance

transformations that we want to study (Figure 2 (I)). In

order to be able to study the influence of a particular bias in

the training data, we must minimize the number of sources

of nuisance transformations in the experiments. Therefore,

we focus on varying the appearance of a face only in terms

of the yaw pose as well as by rotating a directed light source

around the face at a fixed inclination of 55◦. We simulate

strong background variations, which are common in real

world data, by sampling random textures from our empir-

ical background model. All other nuisance parameters are

fixed. We illustrate samples of the face image generator

with the nuisance transformations that we consider in our

experiments in Figure 2. After splitting the synthetic data

into a training and test set we bias the training data e.g. by

removing certain face poses (Figure 2 (II)). Subsequently,

we train different DCNN architectures on the biased train-

ing data (Figure 2 (III)) and evaluate how well the DCNNs

generalize to the unbiased test data. The fully parametric

nature of the synthetic data, allows us to evaluate the recog-

nition rate as a function of the biased nuisance transforma-

tion (Figure 2 (IV )).
In our experiments, we focus on comparing DCNNs with

a significantly diverging performance at face recognition

(AlexNet and VGG-16), as our methodology makes possi-

ble to study why exactly one performs better than the other.

We test these networks at the task of face classification. The

task is to recognize a face from an image, for which the

identity is known at training time. Another common way of

performing face recognition is to use the neural representa-

tion of the penultimate layer and to perform recognition via

nearest neighbor in this feature space [24]. However, we

focus on diagnosing the performance of DCNNs on the task

that they were explicitly optimized on.

Parameter Settings. The size of the images is set to

227× 227 pixels. We train the DCNNs with stochastic gra-

dient descent (SGD) and backpropagation with the Caffe

deep learning framework [19] via the Nvidia DIGITS train-

ing system. Every DCNN is trained from scratch for 30
epochs with a base learning rate of l = 0.001 which is mul-

tiplied every 10 epochs by γ = 0.1. We use L2 regulariza-

tion with a weight regularization parameter of λ = l

100
. If

not stated otherwise, the data is uniformly sampled across

the pose and illumination axes in the specified ranges. The

training data consists of 30 different identities, which we

obtain by randomly sampling the shape and appearance pa-

rameter of the 3DMM. The images in the test set always

reflect an unbiased sampling of the nuisance transformation

that we want to study. For the yaw pose, we sample the pa-

rameter space at intervals of π

32
radian and for the direction

of light at π

16
radian. Each face image is overlayed on 50

different background textures in the training as well as in

the test set.

4.2. Common bias over all facial identities

In this Section, we limit the range of nuisance transfor-

mations in the training data and analyze if DCNNs can gen-

eralize to the unobserved nuisance transformations. Fur-

thermore, we analyze the effect of biasing the number of

training examples to frontal poses. We apply the same bias

to all identities in the training set (Figure 7a).

EXP-1: Bias in the range of the yaw pose. In the fol-

lowing experiments, we limit the range of the yaw pose in

the training data. The light direction is fixed to be frontal.

Figure 3a illustrates the recognition performance as a func-

tion of the yaw pose, when faces in the training set are

restricted to a yaw pose range of [−45◦, 45◦]. Both DC-

NNs achieve high recognition rates for the observed yaw

poses. However, the recognition performance drops signif-

icantly when faces are outside of the observed pose range.

The same generalization pattern can be observed when re-

stricting the faces at training time to a yaw pose range of

[−90◦, 0◦] (Figure 3b). In both experiments, the VGG-16

network achieves higher overall recognition rates, because

it generalizes better to larger unseen yaw poses.

EXP-2: Non-uniform sampling of the yaw pose. In

Figure 4 we illustrate the effect of biasing the yaw pose in

the training data to frontal poses on the recognition perfor-

2209



(a)

(b)

Figure 3: Effect of restricting the range of yaw poses

at training time. (a) Yaw pose restricted to the range

[−45◦, 45◦]. AlexNet TRR: 77.6%; VGG-16 TRR:85.9%.

(b) Yaw pose restricted to the range [−90◦, 0◦]. AlexNet

TRR: 81.8%; VGG-16 TRR:86.9%. In both setups the

DCNNs cannot recognize faces well from previously un-

observed views. VGG-16 achieves a higher TRR due to the

better generalization to large unseen yaw poses.

mance at test time. Such non-uniform pose distributions are

common in modern in the wild databases such as ALFW or

Megaface. The baseline curve in blue shows that a close

to perfect recognition performance across the full yaw pose

can be achieved, if the yaw pose is uniformly sampled in

the training data. However, if a DCNN is trained on the

same amount of training data but with a strong bias towards

frontal poses then the recognition rate for faces in extreme

poses drops significantly (red curve). Thus, we can deduce

that an important property for face datasets is that the full

variability of the yaw pose is reflected with a sufficient num-

ber of examples. In the supplementary, we show that the

same generalization pattern can be observed for the VGG-

16 architecture.

EXP-3: Sparse sampling of the yaw pose. In Fig-

ure 5 we illustrate the effect of sampling the training data

more sparsely along the axis of the yaw pose. We first bias

the training set to yaw poses of −45◦ and 45◦. VGG-16

achieves a TRR of 70.5% at test time, whereas AlexNet

only achieves 51.8%. Figure 5a illustrates how these TRRs

decompose as a function of the yaw pose. VGG-16 achieves

constantly higher recognition rates across all poses. Most

Figure 4: Effect of biasing the training data to frontal faces.

The plot shows the recognition rates of two AlexNet DC-

NNs as a function of the yaw pose. Both networks were

trained on the same amount of images, however, the number

of training samples per yaw pose is different. Blue curve:

TRR: 99.98%; Each yaw pose is equally likely to occur.

Red curve: TRR: 99.23%; Yaw pose is sampled according

to a Gaussian distribution N (µ = 0◦, σ = 7). The unbi-

ased DCNN (blue) generalizes well along the axis of yaw

variation, whereas the recognition rate of the biased DCNN

drops significantly for those poses that are underrepresented

in the training data.

significantly, it is more than twice as good as AlexNet at

recognizing frontal faces. If we add frontal faces at train-

ing time (Figure 5b) VGG-16 achieves a TRR of 81.9%,

whereas AlexNet achieves 69.3%. Remarkably, VGG-

16 is now able to recognize all faces correctly across the

full range of [−45◦, 45◦], whereas the recognition rates

of AlexNet still drop significantly for poses in between

[−45◦, 0◦] and [0◦, 45◦]. Thus, the architecture of VGG-16

enables the DCNN to generalize well from only a few well

distributed example views to other unseen views, although

it has more parameters than AlexNet.

EXP-4: Bias in the illumination. In this experiment,

we test how strong the effect of a bias in the illumination

condition is on the recognition performance. We fix the

pose of faces in the training data to be frontal and only vary

the light direction. We restrict the variation in the light di-

rection at training time to the range [−90◦, 0◦]. Figure 6

illustrates, that both DCNN types can generalize very well

to the unseen illumination conditions. This might be due to

the fact that our illumination model does not include self-

shadowing and hard shadows. Thus by focusing on the im-

age gradient information a DCNN could strongly limit the

influence of changing illumination conditions.

EXP-5: Bias in the illumination with pose varia-

tion. In the following experiment, we test if an AlexNet

DCNN can still generalize under biased illumination con-

ditions when the face pose is variable. In particular, we

vary faces in the training set uniformly across the full yaw

range [−90◦, 90◦]. As in the previous experiment EXP-4,

we restrict the variation of the light direction to the range
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(a)

(b)

Figure 5: Effect of sparsely sampling the yaw pose of faces

at training time. (a)Yaw pose sampled at −45◦ and 45◦

(AlexNet TRR: 51.8%; VGG-16 TRR: 70.5%); VGG-16

generalizes much better to frontal poses than AlexNet. (b)

Yaw pose sampled at −45◦, 0◦ and 45◦ (AlexNet TRR:

69.3%; VGG-16 TRR: 81.9%); VGG-16 generalizes per-

fectly across the full range [−45◦, 45◦], whereas AlexNet

still cannot generalize in between the sampled poses.

Figure 6: Effect of biasing the light direction at training

time. In the experiment the pose of all faces is fixed to be

frontal. Face images in the training vary in terms of light

direction in the range [−90◦, 0◦]. At test time, AlexNet and

VGG-16 generalize well to the unseen illumination condi-

tions > 0◦ (AlexNet TRR: 95.6%; VGG-16 TRR: 93.7%).

[−90◦, 0◦]. Figure 8 illustrates the recognition rate as a

function of the yaw pose and light direction. We can clearly

observe that the DCNN generalizes well across the full pose

variation and across the full range of light direction. This is

surprising because the effect of the pose-light interaction on

the facial appearance has not been observed at training time

for light directions > 0◦. We think that the DCNN can gen-

eralize to unseen light directions very well, because these

transformations only have a relatively small impact on the

gradients in the images compared to changes in the identity

or variations in the pose. Therefore, we suppose that DC-

NNs trained on face recognition might have a strong focus

on gradient information in the image.

Summary. In this section, we have shown that in order

to achieve a good face recognition performance across the

yaw pose, the full pose variation must be reflected in the

training data with a sufficient number of training samples.

However, the parameters of the yaw pose must not be sam-

pled densely when training with the VGG-16 architecture

(Fig.5). Furthermore, we have observed that DCNNs can

generalize surprisingly well to unseen facial appearances

due to changing light directions. In all experiments with

missing viewpoints, we have seen that the DCNNs with

the VGG-16 architecture can significantly better generalize

than DCNNs with the AlexNet architecture.

(a) (b)

Figure 7: Different types of biases illustrated on the exam-

ple of yaw pose. Faces with red background are part of the

training set. (a) The same bias is applied to all the identities

in the training set. Thus, the pose variation space is only

partially observed. We use this setup in Section 4.2 and 4.4.

(b) For each half of the identities an alternating half of the

pose transformation is applied. Thus, the full pose transfor-

mation space is reflected in the data (Section 4.3 & 4.4).

Figure 8: Illustration of the recognition rate as a function of

the light direction and yaw pose for a DCNN with AlexNet

architecture. The light direction in the training data was

biased to the range [−90◦, 0◦], while the yaw pose varied in

the full range [−90◦, 90◦]. The DCNN can generalize well

even to previously unseen combinations of yaw pose and

light direction.
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(a)

(b)

Figure 9: Testing disentanglement ability of DCNNs. Dot-

ted lines: DCNNs trained on a biased yaw pose (illustrated

in Figure 7a). Solid lines: Disentanglement setup (illus-

trated in Figure 7b). (a) Left-Identities with biased yaw pose

of [−90◦, 0◦]. (b) Right-Identities with biased yaw pose of

[0◦, 90◦]. DCNNs cannot make use of the additional infor-

mation about the pose transformation which is present in

the data in the disentanglement setup.

4.3. Disentanglement bias across facial identities

In the previous section, we have observed that DCNNs

generalize well as soon as a nuisance transformation is suf-

ficiently represented for each identity in the training. When

this was not the case, the generalization performance de-

creased significantly. In this section, we study if DCNNs

are capable of generalizing if the nuisance transformation is

densely reflected in the training data across multiple identi-

ties. In particular, each face identity in the training is varied

in a certain interval of the yaw pose. However, across all

identities the full yaw pose variation is reflected. In Fig-

ure 7b we schematically illustrate how this setup compares

to the one from the previous Section 4.2 (Figure 7a). We

call this type of bias disentanglement bias, since if DCNNs

are capable of disentangling the image variation induced by

the yaw pose from the face identity, then they would be able

to generalize well on this dataset.

EXP-6: Disentanglement of pose variation. In this ex-

periment, half of the identities in the training set vary in the

yaw pose range of [−90◦, 0◦]. We refer to those identities

as the set Left-identities. The other half of the faces varies

(a)

(b)

Figure 10: Influence of regularization on the ability of

AlexNet to disentangle identity and pose transformation.

(a) Left-Identities. (b) Right-Identities. Strongly regulariz-

ing AlexNet with L1 (yellow) or L2 regularization on the

weights, does slightly improve the networks disentangle-

ment ability, compared to a weak regularization (blue).

in the range [0◦, 90◦] (Right-identities, Figure 7b). Figure 9

illustrates the recognition performance of DCNNs trained

on the full training set. We evaluate the Left-identities and

Right-identities separately (Figure 9a & Figure 9b). We ob-

serve, that the DCNNs only slightly improve compared to

setup where the yaw pose range is restricted to [−90◦, 0◦]

for all identities (dotted curves). Thus, both DCNNs cannot

benefit from the additional information in the training set.

We conclude that this phenomenon occurs because they are

not able to disentangle the image variation induced by the

pose variation and the identity change.

EXP-7: Influence of regularization on disentangle-

ment ability. We test if a strong regularization on the net-

work weights improves the performance of DCNNs in the

disentanglement setup. The hypothesis underlying this ex-

periment is that the capacity of the network might be too

large, which favors memorization of the training examples

and hinders it from performing disentanglement. Therefore,

we increase the weight decay parameter λ during SGD. To

find the strongest possible regularization, we increase λ up

to the point where the training of the networks does not suc-

ceed anymore and set λ to be the penultimate value. We use

the AlexNet architecture and apply regularization weights

λL1 = 0.001 as well as λL2 = 0.01 (Figure 10). A strong
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(a) (b)

Figure 11: Reproduction of the experiments EXP-3 and

EXP-8 on real data (Figure 5b and 8 ). (a) Sparse sampling

of the training data at yaw poses −45◦,0◦ and 45◦. (b) Bias

of the illumination direction to [−90◦, 0◦] and full yaw pose

variation. In both cases, the generalization patterns are very

similar to the ones obtained on the synthetic data.

regularization does not significantly increase a DCNNs abil-

ity to perform disentanglement. In the supplementary ma-

terial, we show that the same generalization patterns can be

observed for the VGG-16 network.

Summary. We have observed that DCNNs which are

trained from scratch are not able to disentangle the image

variation induced by pose transformations from the one in-

duced by the change of the identity. This suggests that DC-

NNs cannot perform disentanglement if the space of nui-

sance transformations is not reflected in the training sam-

ples of each identity in the training set. The proposed

benchmark is perfectly suited to analyze the disentangle-

ment performance of novel DCNN architectures.

4.4. Validity for real data

In this section, we study if the generalization patterns

that we observed on synthetic data can be reproduced on

real data. The CMU Multi-PIE [14] database is one of the

biggest datasets with annotated facial pose and illumination

conditions. Our experiments in this section should be re-

garded more as proof of the concept behind our method-

ology, rather than as evidence that all of our observations

transfer one-to-one to real data. We use data of 30 identities

of session-01. For training, we crop the face in a 300× 300
region and rescale it to have size 227× 227.

EXP-8: Real data - Sparse sampling of yaw pose. In this

experiment, we reproduce the setup of experiment EXP-3.

We use frontal illumination (flash 16) at training time. At

test time, we classify the same identities in a slightly dif-

ferent illumination setup (flash 15). Analogous to experi-

ment EXP-3, we bias the yaw pose in the training data to

the poses −45◦, 0◦ and 45◦. Figure 11a illustrates that the

generalization performance of both DCNNs is very similar

to what we have observed on the synthetic data. Compared

to AlexNet, VGG-16 generalizes much better in the yaw

pose range of [−45◦, 45◦]. Beyond this range, the recogni-

tion performance of both networks drops significantly.

EXP-9: Real data - Bias in the illumination with pose

variation. We reproduce the setup of experiment EXP-5.

At training time, we use the light directions in the range

[−90◦, 0◦] (flash 0− 6) for the full pose range [−90◦, 90◦].

At test time, we only classify faces with light coming from

the directions [0◦, 90◦] (flash numbers 7−13). We train the

AlexNet architecture and illustrate the results in Figure 11b.

Again, the generalization pattern is very similar to the one

observed on synthetic data. The DCNN can generalize very

well to unseen illuminations.

In summary, we observed that the generalization patterns

from experiments EXP-3 and EXP-5 on synthetic data can

also be observed when training on real world data.

5. Conclusion

In this work, we have studied the effect of dataset bias

and DCNN architectures on the generalization performance

of deep face recognition systems with a fully parametric

generator of face images. We demonstrated that the full

control over the image variation makes possible to decom-

pose the recognition score as a function of nuisance trans-

formations. This enabled us to systematically analyze and

compare DCNNs at the task of face recognition.

We verified that biases in the pose distribution have a sig-

nificant influence on the generalization performance while

this is not the case for biases in the illumination.

We used the proposed methodology to study why the VGG-

16 architecture generally outperforms the AlexNet architec-

ture at face recognition tasks. We showed that a major rea-

son for this phenomenon is that VGG-16 can better gener-

alize from missing data in the pose distribution as well as

from a bias to frontal face poses.

A major limitation of the analyzed DCNN architectures is

that they have severe difficulties to generalize when differ-

ent identities do not share the same pose variation. Lastly,

we collected evidence that the generalization patterns we

observe when training on synthetic data, also occur when

training on real data. Our findings have to be taken with

some caveats. Our training setups were controlled and have

to be confirmed on larger datasets with millions of iden-

tities and additional combinations of nuisance transforma-

tions. Nevertheless, our findings raise fundamental ques-

tions about the generalization patterns that we observed: 1)

What is the mechanism that allows VGG-16 better gener-

alize to large unseen poses? 2) Why can DCNNs general-

ize so well to unseen illumination conditions, although they

have a significant effect on the facial appearance? 3) What

additional mechanisms would lead to a better disentangle-

ment of pose variations across identities?

Our face image generator is publicly available and allows to

compare DCNN architectures on a common ground, as well

as to understand their internal mechanisms better.
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