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Abstract

Deep learning methods have become the standard for

Visual Speech Recognition problems due to their high ac-

curacy results reported in the literature. However, while

successful works have been reported for words and sen-

tences, recognizing shorter segments of speech, like phones,

has proven to be much more challenging due to the lack of

temporal and contextual information. Also, head-pose vari-

ation remains a known issue for facial analysis with direct

impact in this problem. In this context, we propose a novel

methodology to tackle the problem of recognizing visemes –

the visual equivalent of phonemes – using a GAN to artifi-

cially lock the face view into a perfect frontal view, reduc-

ing the view angle variability and simplifying the recogni-

tion task performed by our classification CNN. The GAN is

trained using a large-scale synthetic 2D dataset based on

realistic 3D facial models, automatically labelled for dif-

ferent visemes, mapping a slightly random view to a perfect

frontal view. We evaluate our method using the GRID cor-

pus, which was processed to extract viseme images and their

corresponding synthetic frontal views to be further classi-

fied by our CNN model. Our results demonstrate that the

additional synthetic frontal view is able to improve accu-

racy in 5.9% when compared with classification using the

original image only.

1. Introduction

Visual Speech Recognition (VSR) is the process of in-

terpreting spoken text using video information and is use-

ful when audio data is unavailable or corrupted. Previous

studies have demonstrated that audio-video data can im-

prove the recognition of audio-only data in noisy environ-

ments [2]. In this context, several works have addressed

the recognition of sentences, words, and, to a lesser ex-

tent, visemes. A viseme is the visual correspondent of a

phoneme, i.e., the mouth shape when a user pronounces a

phoneme, and given viseme may represent more than one

phoneme.

Viseme recognition has valuable characteristics in com-

parison to the recognition of larger speech segments. For

instance, in order to identify words or sentences, a sys-

tem must be trained using data captured in a specific lan-

guage or vocabulary; on the contrary, a viseme recognition

system may be more easily applied for different languages

that share a common set of phonemes – and consequently,

visemes. For instance, according to the mapping from [3],

the US-English set of visemes encompasses all visemes

from the Dutch language and all visemes from Portuguese,

Spanish, Italian, and French, except for the viseme repre-

senting the phonemes /ñ/ and /L/ – denoted by the Interna-

tional Phonetic Alphabet (IPA) syntax. Therefore, a training

dataset built using visemes instead of words or sentences,

can be adapted more easily for different languages without

the need to re-train the algorithm with entirely new model

and data. Moreover, automatic viseme recognition may be

applied to lip-synchronization for synthesizing speech in a

video sequence [22].

Recently, synthetic datasets have been applied success-

fully for the problem of facial analysis by Convolutional

Neural Networks (CNNs), more precisely, for facial expres-

sion recognition [1] and viseme recognition, using a basic

transfer learning approach [20]. However, when it comes to

facial image analysis, the variability of the view angle still

impacts greatly the performance of classification methods.

In this work, we propose to enhance the power of CNN-

based automated viseme recognition by using Generative

Adversarial Networks (GANs) to artificially generate a syn-

thetic version of a given input mouth shape, perfectly locked

in frontal view, and used in addition to the original image for

the classification process. To train the GANs we created a

large set of 2D synthetic realistic face images obtained from

realistic 3D facial models.

This paper is structured as follows. In Section 2, we

list previous work on automated VSR focusing on viseme-

based approaches. In Section 3, we describe the method-

ology for mapping input mouth images from an arbitrary
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view to a synthetic frontal view and the proposed classifi-

cation approach. Section 4 describes our experiments with

the popular GRID corpus [9] and the obtained results. The

paper is concluded in Section 5.

2. Related Work

Several works have addressed different aspects concern-

ing the quality of VSR. Because the correspondence be-

tween phonemes and visemes is characterized as one-to-

many, some studies have addressed how different phoneme-

to-viseme mappings affect automated lip-reading perfor-

mance; such works are explored in detail by Bear and Har-

vey [5]. Koumparoulis et al. [15] have demonstrated that the

design of the mouth ROI (region-of-interest) affects VSR

performance significantly: the smallest error rates corre-

sponds to a ROI that includes part of the lower face region,

in addition to the mouth, solely.

Formerly, VSR was often addressed by Active Ap-

pearance Models (AAMs) and Hidden Markov Models

(HMMs), as reviewed extensively by [24]. Recently, Deep

Learning-based methods have drastically improved state-of-

the-art accuracy for the task. Chung et al. [8] use a ‘Watch,

Listen, Attend and Spell’ (WLAS) network for classifying

sentences of the GRID corpus with 97% accuracy. For com-

parison, the previous baseline for the dataset, using AAMs,

was 65% [16].

Another component that should be considered is the size

of the speech segment to be recognized. Although sen-

tences from GRID corpus can be identified with very high

accuracy, recognizing letters and digits have proven to be

a much more challenging task. The baseline for AVLetters

dataset [18] on the recognition of isolated letters is 64.63%,

using a temporal multi-modal Deep learning-based archi-

tecture [12]. The baseline for AVDigits dataset, using the

same method, is 40.66% on the recognition of isolated dig-

its.

Regarding even shorter speech segments, in the task of

viseme recognition, authors have used SVM to achieve 63%

accuracy on distinguishing between 6 viseme classes [21],

deep CNNs to obtain 55.7% accuracy on the recognition of

12 viseme classes [14], deep NNs for recognizing 13 viseme

classes with 46.61% accuracy [23], and AAMs with a small

dataset of two users for achieving around 40-50% accuracy

on the recognition of 18 viseme classes [6]. The lower

accuracy for short speech segments is expected: previous

work demonstrated that human lip-reading performance in-

creases for longer words, indicating the importance of tem-

poral features [4], that also provide valuable data for auto-

mated VSR.

In this paper, we describe a novel methodology to rec-

ognize visemes with a GAN-based schema for synthetically

generating a perfect frontal view of a mouth shape to be

used as additional information to a CNN state-of-art classi-

fier.

3. Method

Our methodology is composed by three major steps, as

depicted in Figure 1. First, we create a large synthetic

database composed by pairs of synthetic images: a random

near-frontal image, and the corresponding perfectly frontal

image. Then, we train a GAN to map a random near-frontal

image into the corresponding perfectly frontal view image.

Finally, we use this additional view to train a CNN for clas-

sifying visemes. We describe each step in details in the fol-

lowing.

3.1. Viseme Map

Prior works have explored several phoneme-to-viseme

mappings in order to assess the most indicated for visual-

only computer lip-reading. The map proposed by Lee and

Yook [17] is commonly used and has proven to work ef-

fectively for this scenario, therefore, it was our choice for

this study. The viseme images extracted from the synthetic

and real datasets were selected and grouped into 11 classes,

with 5 vowels and 6 consonants.

Table 2 displays the grouped phonemes – described in

the IPA syntax – and corresponding viseme classes. We

denote each viseme class by an identifier to which we will

refer in the remaining of the text. In Table 1, each of the

11 classes is represented by a real subject from the GRID

dataset and a synthetic subject on frontal and profile views.

3.2. Synthetic Dataset Generation

The GAN used in this work was trained using pairs of

mouth images captured at random angles and their cor-

responding frontal view images. The generation of this

dataset is divided in two steps: (i) modeling the faces; and

(ii) rendering the models under different lighting and ro-

tation conditions. Both processes are described in detail

in [19].

In short, the 3D faces were generated us-

ing the commercial software FaceGenTMModeller

(https://facegen.com), which allows creating

and exporting realistic facial models with different ages,

genders, races, and facial expressions, in particular, 16

US-English visemes. We first used FaceGen to create and

export 100 subjects for the training dataset. Then, we

combined the models – that share the same topology, i.e.,

an equal number of vertices and faces, and a full correspon-

dence between every point – to produce new subjects via

linear combinations. Applying the combinations (both on

meshes and texture data) resulted in 2550 subjects.

Then, the C++ open source engine OGRE 3D

(http://www.ogre3d.org/) was used for rendering

the created models and grouping the images according to
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Figure 1. Our proposed methodology: first we generate a comprehensive synthetic viseme dataset; then we train a GAN to generate frontal

views from a given random view image; and finally, we use both the given image and the corresponding GAN-generated frontal view image

to classify the viseme.

Consonants Vowels

VJ,CH VP,M,B VF,V VD,T,S VR,W VG,K,N VA VE VI VO VU

Table 1. Samples of visemes from each class. The first row of images shows the corresponding viseme displayed by a subject from the

GRID dataset. The second row shows the same viseme displayed by a synthetic subject in the frontal view.

the fixed view angles. Using the engine, all subjects are

rendered, one at a time, displaying each viseme. While the

camera is fixed, and targeted at the face region, the sub-

jects are rendered displaying each mouth shape under var-

ious lighting conditions. In each iteration, a face is loaded

and four screenshots are taken under the following rotation

conditions. First, random values are computed for defining

the face rotation around x, y, and z axis. Then, the face

is rotated (maintaining the same viseme and lighting condi-

tion) around the y axis in 0◦ (frontal view). For the random

rotation, the angles are limited to [-30◦,30◦] for x axis, [-

15◦,15◦] for y axis, and [-15◦,15◦] for z axis. The rotation

in the y axis is small because the GRID dataset contains

faces acquired in a near-frontal position.

This process is repeated while all subjects display every

viseme. At the end, we have a dataset of images with the

frontal view fixed angle paired with the images captured at

random rotations. Each subject is rendered once display-

ing each viseme. In total, we generated a dataset with 2550

subjects and 16 visemes (including the neutral face for si-

lence), totaling 40.800 synthetic images. A few samples are

displayed in Figure 2.

3.3. GRID Dataset Annotation

The GRID dataset is composed of registered video and

audio data recorded from 33 subjects in a controlled envi-

ronment. Each pair of video and audio accompanies the

corresponding transcription stating when the pronunciation

of each word occurs. However, this annotation is not de-

tailed in the phoneme level.

Therefore, we needed to use forced phonetic align-
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Consonants Vowels

Viseme Phoneme Sound Vis. Phon. Sound

VJ,CH

/Ã/ jeep

VA

/A:/ car

/Ù/ cheap /aU/ house

/S/ dilution /aI/ fly

/Z/ delusion /2/ cup

VP,M,B

/p/ pit

VE

/e/ egg

/b/ bit /eI/ same

/m/ map /æ/ cat

VF,V
/f/ fat

VI
/i:/ sheep

/v/ vat /I/ ship

VD,T,S

/d/ din

VO

/O:/ door

/t/ tin /OI/ coin

/s/ sap /@U/ nose

/z/ zap

/T/ thigh

/D/ thy

VR,W
/r/ run

VU
/U/ book

/w/ we /u:/ boot

VG,K,N

/g/ gut

/k/ cut

/n/ thin

/N/ thing

/l/ left

/y/ yes

/h/ ham
Table 2. Phoneme-to-viseme map used in this work. Notice that

each viseme class groups a set of phonemes, exemplified here by

one sound that they represent.

(a) Random view.

(b) Frontal view (0◦).

Figure 2. Samples of the synthetic dataset. The random images (a)

are paired to the corresponding image in the frontal view – (b)

ment1 to estimate the location of each phoneme in the

audio file, so we could extract the viseme at the cor-

responding frame from the video file. For this task,

we used Prosody-lab [11], a python-based open source

tool based on HTK (Hidden Markov Model Toolkit -

http://htk.eng.cam.ac.uk/). Although Prosody-

lab contains its own dictionary and acoustic model, using

the audio and transcriptions from GRID for training a new

1Forced phonetic alignment is the process of determining the times at

which individual sounds appear in an audio recording – under the con-

straint that words in the recording follow the same order as they appear in

an accompanying transcript file.

acoustic model has proved to generate a more precise align-

ment.

Figure 3 displays the result of the phonetic alignment

for the phrase “BIN BLUE AT F TWO NOW”, visualized in

the free software Praat (www.praat.org). More details

on the acquisition of the real viseme dataset are presented

in [20].

Figure 3. Alignment of words and phonemes (specified in the blue

delimited intervals) of an audio recording from GRID. In the first

row one observe the waveform, in the second the spectrogram, in

the third and forth the time occurrences of spoken phonemes and

words respectively. Over the spectrogram we observe the funda-

mental frequency contour in yellow and the energy contours in

blue.

3.4. Frontal view GANbased Mapping

To map from random views to frontal views we used the

Generative adversarial networks firstly proposed by Good-

fellow et al. [10] and widely discussed in the Computer

Vision community in the last few years. They are basi-

cally composed by two networks: a generator that outputs

invented images; and a discriminator that evaluates them

against real ones. In this schema, optimization is dual: the

generator tries to generate images realistic enough to fool

the discriminator, that tries to correctly identify the invented

images as non-real, as shown in Figure 4. Each of them is

optimized in rounds, and in practice one expects that the

generative network learns to map from a latent space to a

particular data distribution of interest, and the discrimina-

tor network learns to discriminate between instances from

the true data distribution and candidates produced by the

generator. Since the objective of the generator network is

to increase the error rate of the discriminator network, very

realistic samples are expected as an outcome from the gen-

erator network.
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Figure 4. The idea behind Pix2Pix. The generator G receives an

image x with view taken at a random angle, and tries to generate

an image G(x) with a view at a fixed angle. The discriminator, D,

learns to classify between fake (synthesized by the generator) and

real pairs of images.

In this work, we used specifically the Pix2Pix GAN

architecture proposed by Isola et al. [13], which is com-

posed by a classic encoder-decoder generator network and

a “PatchGAN” discriminator network. The Pix2Pix gen-

erator network is composed of several encoder convolu-

tional blocks, followed by several decoder blocks. Encoder

blocks are convolutional networks that receive an input im-

age and reduce it to a much smaller data representation

trough convolutions, while decoder blocks do the opposite

and try to recover the original information (or any different

goal information) out of this compact data representation.

The discriminator network consists of a sequence of en-

coders where the last block outputs a representation where

each pixel encodes how believable the corresponding image

patch is with respect to a ground truth image pair.

The training of such an architecture consists of two steps:

1. Training the discriminator network using data gener-

ated by the generator network and real data, so it learns

to discriminate between a real and an invented pair of

images;

2. Training the generator network using the pair of in-

vented and reference images and the discriminator

guess as a bias to update the generator gradients.

In our experiments, we used the synthetic dataset de-

scribed before as training data to a Pix2Pix network, with

the goal of creating a viseme face image at a fixed frontal

view given an image captured at a random angle. In this im-

plementation, the generator gets an image with a view from

a random angle and tries to generate the image at a frontal

view, and the discriminator tries to identify if the generated

image is at the right angle or not. With the trained GAN, we

were able to feed the network with real images and get their

corresponding synthetic frontal view.

3.5. CNN viseme classification

With a pair of real image and the corresponding GAN-

generated frontal view, we trained a CNN to classify

visemes. In this work, we used the Xception architecture

proposed by [7] for classification, which is one of the top

ranked CNNs for multi-class categorical image classifica-

tion. The network is inspired in the classic Inception archi-

tecture, where Inception modules are replaced with faster

depth-wise separable convolutions.

4. Experiments

Our experiments consisted of training the GAN to gen-

erate the synthetic frontal view, and training the CNN to

classify visemes.

4.1. Synthetic frontal view generation

The goal of this experiment was to assess the visual sim-

ilarity between the images generated by the GANs and a

ground truth. The ground truth was created by rotating the

actual 3D model to the frontal view, and 20k images where

used as test set for qualitative evaluation. Some results of

this experiment are displayed in Figure 5. Notice that the

images outputted by the GAN are very similar to the ground

truth (target) images, except for some minor artifacts that

occur especially at the teeth region.

(a) Input images at random view.

(b) Output of GAN when mapping images in (a) to the frontal view.

(c) Ground truth of images in (a) at frontal view.

Figure 5. Results when mapping synthetic inputs to the frontal

view.

We also visually inspected the synthetic frontal view

generated using real GRID data for different visemes. The

visual outcome is displayed in Figure 6. One can notice that

any rotation effect is corrected, and the output image looks

like the synthetic ones, which we also believe to be helpful

for the classification step. Again, some minor artifacts are

observed especially at the teeth region.

4.2. Viseme classification

The classification experiments were planned to evaluate

the benefits of using the synthetic frontal view to improve

the performance of CNNs on the classification of visemes

from real data. They consisted of two different rounds:

(i) using only GRID dataset; and (ii) using GRID im-
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Figure 6. Results when mapping real data inputs to the frontal view

for different visemes. The first and second rows show respectively

real and corresponding synthesized data for different visemes.

age concatenated with the GAN-generated synthetic frontal

view, as shown in Figure 6.

The GRID dataset used for training comprised 29 sub-

jects and generated an imbalanced training set of viseme

images, ranging from 26788 samples of class VD,T,S to 868

samples of class VO. Validation and testing used 2 subjects

each and generated an image set ranging from 2145 samples

of class VD,T,S to 75 samples of class VO for test, and from

1391 samples of class VD,T,S to 63 samples of class VO for

validation.

All the experiments considered the Xception architecture

proposed by [7], Adam algorithm was used for weights opti-

mization and categorical cross entropy as the loss function.

Training was run over 30 epochs (which was a safe mar-

gin to achieve convergence in our experiments), where each

epoch consisted of 500 balanced batches of 55 samples – 5

samples per viseme class, taken randomly from the training

set. Validation consisted of 50 steps of 55 samples – again,

5 samples per viseme class, taken randomly from the vali-

dation set. Testing considered all image samples from the

test set up to the limit of 1000 samples per class.

Our two experiments used exactly the same CNN archi-

tecture and basal data, the difference is that the first run used

only GRID original data trained from scratch, and the sec-

ond run used an image composed by the concatenation of

a real image and the corresponding GAN-generated frontal

view, also trained from scratch. The first model achieved an

overall accuracy on testing of 61.40%, while our proposed

methodology achieved 67.30% overall accuracy, which rep-

resents an increase of 5.9% in accuracy. Detailed results are

presented by means of a confusion matrix displayed in Ta-

ble 3. It is possible to observe that our model outperformed

the baseline model in at least 4 visemes by a great margin,

under performed in 2 visemes, and got similar results in 5

visemes. It is also possible to observe that the differences

in accuracy are especially significant for visemes VF,V , VI

and VU .

In comparison to other works, Saenko et al. [21] used

SVM to achieve 63% accuracy on distinguishing between

6 viseme classes and Koller et al. [14] used deep CNNs

to obtain 55.7% accuracy on the recognition of 12 viseme

classes. We also achieved an accuracy 2.5% superior in

comparison with the transfer learning method presented in

[20], which achieved 64.80% of overall accuracy using also

GRID database and 11 visemes.

5. Conclusion

This work aimed at improving viseme classification us-

ing a novel GAN-based solution for easing the CNN-based

classification task. Our results indicate that using GANs

to generate a perfectly locked frontal view of a given in-

put mouth shape was able to improve in 5.9% the accuracy

of CNN-based viseme recognition. Given the challenging

nature of this task, demonstrated by our literature review,

this improvement is considered to be significant. We also

observed that the GAN model used was able to generate

close-to-real synthetic frontal views from real images and

diminish observed rotation effects.

An advantage of using synthetically generated databases

for training models for further transfer learning in any cre-

ative way, is to be able to control the dataset conditions. In

this application we used random near frontal views, which

were observed in the GRID dataset. However, it is worth

mentioning that such methodology could be applied to dif-

ferent conditions, and this is a natural extension of this

work.

For further research, we intend to explore the use of

GANs for generating synthetic multi-view images in the

context of CNN-based viseme classification, and try dif-

ferent CNN architectures for visemes classification. As

related research, since our 3D models may display com-

bined expressions, we intend to explore emotions recogni-

tion and combine visemes and facial expressions for eval-

uating visemes recognition in videos where the speech is

being affected by different emotions, such as happiness or

anger.
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