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Abstract

Estimating the head pose of a person is a crucial prob-

lem that has a large amount of applications such as aiding

in gaze estimation, modeling attention, fitting 3D models

to video and performing face alignment. Traditionally head

pose is computed by estimating some keypoints from the tar-

get face and solving the 2D to 3D correspondence problem

with a mean human head model. We argue that this is a

fragile method because it relies entirely on landmark detec-

tion performance, the extraneous head model and an ad-hoc

fitting step. We present an elegant and robust way to deter-

mine pose by training a multi-loss convolutional neural net-

work on 300W-LP, a large synthetically expanded dataset,

to predict intrinsic Euler angles (yaw, pitch and roll) di-

rectly from image intensities through joint binned pose clas-

sification and regression. We present empirical tests on

common in-the-wild pose benchmark datasets which show

state-of-the-art results. Additionally we test our method on

a dataset usually used for pose estimation using depth and

start to close the gap with state-of-the-art depth pose meth-

ods. We open-source our training and testing code as well

as release our pre-trained models 1.

1. INTRODUCTION

The related problems of head pose estimation and fa-

cial expression tracking have played an important role over

the past 25 years in driving vision technologies for non-

rigid registration and 3D reconstruction and enabling new

ways to manipulate multimedia content and interact with

users. Historically, there have been several major ap-

proaches to face modeling, with two primary ones being

discriminative/landmark-based approaches [26, 29] and pa-

rameterized appearance models, or PAMs [4, 15] (see [30]

for additional discussion). In recent years, methods which

directly extract 2D facial keypoints using modern deep

learning tools [2, 35, 14] have become the dominant ap-

proach to facial expression analysis, due to their flexibility

1https://github.com/natanielruiz/deep-head-pose

and robustness to occlusions and extreme pose changes. A

by-product of keypoint-based facial expression analysis is

the ability to recover the 3D pose of the head, by establish-

ing correspondence between the keypoints and a 3D head

model and performing alignment. However, in some ap-

plications the head pose may be all that needs to be esti-

mated. In that case, is the keypoint-based approach still the

best way forward? This question has not been thoroughly-

addressed using modern deep learning tools, a gap in the

literature that this paper attempts to fill.

We demonstrate that a direct, holistic approach to esti-

mating 3D head pose from image intensities using convo-

lutional neural networks delivers superior accuracy in com-

parison to keypoint-based methods. While keypoint detec-

tors have recently improved dramatically due to deep learn-

ing, head pose recovery inherently is a two step process with

numerous opportunities for error. First, if sufficient key-

points fail to be detected, then pose recovery is impossible.

Second, the accuracy of the pose estimate depends upon the

quality of the 3D head model. Generic head models can

introduce errors for any given participant, and the process

of deforming the head model to adapt to each participant

requires significant amounts of data and can be computa-

tionally expensive.

While it is common for deep learning based methods us-

ing keypoints to jointly predict head pose along with fa-

cial landmarks, the goal in this case is to improve the accu-

racy of the facial landmark predictions, and the head pose

branch is not sufficiently accurate on its own: for exam-

ple [14, 20, 21] which are studied in Section 4.1 and 4.3.

A conv-net architecture which directly predicts head pose

has the potential to be much simpler, more accurate, and

faster. While other works have addressed the direct regres-

sion of pose from images using conv-nets [31, 19, 3] they

did not include a comprehensive set of benchmarks or lever-

age modern deep architectures.

In applications where accurate head pose estimation is

required, a common solution is to utilize RGBD (depth)

cameras. These can be very accurate, but suffer from a

number of limitations: First, because they use active sens-

ing, they can be difficult to use outdoors and in uncontrolled
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environments, as the active illumination can be swamped

by sunlight or ambient light. Second, depth cameras draw

more power than RGB, resulting is significant battery life

issues in mobile applications, and they are much less preva-

lent in general. Third, the data rates for RGBD are higher

than for RGB, increasing storage and data transfer times. As

a consequence, for a wide range of applications in domains

such as pedestrian tracking and safety monitoring in au-

tonomous driving, computer graphics, driver alertness mon-

itoring, and social scene understanding from video, there

remains a need for an RGB-based 3D head pose estimation

solution which is fast and reliable.

The key contributions of our work are the following:

• Proposing a method to predict head pose Euler angles

directly from image intensities using a multi loss net-

work which has a loss for each angle and each loss has

two components: a pose bin classification and a regres-

sion component. We outperform published methods in

single frame pose estimation in several datasets.

• Demonstrating the generalization capacity of our

model by training it on a large synthetic dataset and

obtaining good results on several testing datasets.

• Presenting ablation studies on the convolutional archi-

tecture of the network as well as on the multiple com-

ponents of our loss function.

• Presenting a detailed study of the accuracy of pose

from 2D landmark methods, and detail weaknesses

of this approach which are solved by the appearance

based approach that we take.

• Studying the effects of low resolution on pose estima-

tion for different methods. We show that our method

coupled with data augmentation is effective in tackling

the interesting problem of head pose estimation on low

resolution images.

2. RELATED WORK

Human head pose estimation is a widely studied task

in computer vision with very diverse approaches through-

out its history. In the classic literature we can discern Ap-

pearance Template Models which seek to compare test im-

ages with a set of pose exemplars [17, 27, 28]. Detector

arrays were once a popular method when frontal face de-

tection [18, 23] had increased success, the idea was to train

multiple face detectors for different head poses [9, 34].

Recently, facial landmark detectors which have become

very accurate [2, 35, 14], have been popular for the task of

pose estimation.

Also recently, work has developed on estimating head

pose using neural networks. [19] presents an in-depth study

of relatively shallow networks trained using a regression

loss on the AFLW dataset. In KEPLER [14] the authors

present a modified GoogleNet architecture which predicts

facial keypoints and pose jointly. They use the coarse pose

supervision from the AFLW dataset in order to improve

landmark detection. Two works dwell on building one net-

work to fulfill various prediction tasks regarding facial anal-

ysis. Hyperface [20] is a CNN that sets out to detect faces,

determine gender, find landmarks and estimate head pose

at once. It does this by using an R-CNN [7] based ap-

proach and a modified AlexNet architecture which fuses

intermediate convolutional layer outputs and adds separate

fully-connected networks to predict each subtask. All-In-

One Convolutional Neural Network [21] for Face Analysis

adds smile, age estimation and facial recognition to the for-

mer prediction tasks. We compare our results to all of these

works.

Chang et al. [3] also argue for landmark-free head pose

estimation. They regress 3D head pose using a simple CNN

and focus on facial alignment using the predicted head pose.

They demonstrate the success of their approach by improv-

ing facial recognition accuracy using their facial alignment

pipeline. They do not directly evaluate their head pose esti-

mation results. This differs from our work since we directly

evaluate and compare our head pose results extensively on

annotated datasets.

Work from Gu et al.[5] uses a VGG network to regress

the head pose Euler angles. Instead of improving single-

frame prediction by modifying the network structure it fo-

cuses on using a recurrent neural network to improve pose

prediction by leveraging the time dimension which we do

not use. They evaluate their work on a synthetic dataset as

well as a real-world dataset. Another key difference with

our work is that we set out to show generalization capacity

of our network by training on a large dataset and testing the

performance of that network on various external datasets

without finetuning the network on those datasets. We be-

lieve this is a good way to measure how the model will gen-

eralize in real applications.

3. METHOD

In this section we describe the advantages of estimating

head pose with deep networks directly from image inten-

sities and argue that it should be preferred to landmark-to-

pose methods. We explain how combined classification and

regression can be used to improve performance when train-

ing on the larger synthetic 300W-LP [35] dataset. We also

talk about key insights regarding data augmentation, train-

ing and testing datasets and how to improve performance

for low-resolution images.

3.1. Advantages of Deep Learning for Head Pose
Estimation

Even though it might seem evident to the reader that

given careful training deep networks can accurately predict
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Figure 1. Example pose detections in difficult scenarios using our

proposed method. The blue axis points towards the front of the

face, green pointing downward and red pointing to the side. Best

viewed in color.

head pose this approach has not been studied extensively

and is not commonly used for head pose estimation tasks.

Instead if very accurate head pose is needed then depth cam-

eras are installed and if no depth footage exists landmarks

are detected and pose is retrieved. In this work we show that

a network trained on a large synthetic dataset, which by def-

inition has accurate pose annotations, can predict pose ac-

curately in real cases. We test the networks on real datasets

which have accurate pose annotations and show state-of-

the-art results on the AFLW, AFLW2000 [35] and BIWI [6]

datasets. Additionally we are starting to close the gap with

very accurate methods which use depth information on the

BIWI dataset.

We believe that deep networks have large advantages

compared to landmark-to-pose methods, for example:

• They are not dependent on: the head model chosen, the

landmark detection method, the subset of points used

for alignment of the head model or the optimization

method used for aligning 2D to 3D points.

• They always output a pose prediction which is not the

case for the latter method when the landmark detection

method fails.

3.2. The Multi­Loss Approach

All previous work which predicted head pose using con-

volutional networks regressed all three Euler angles directly

using a mean squared error loss. We notice that this ap-

proach does not achieve the best results on our large-scale

synthetic training data.

We propose to use three separate losses, one for each

angle. Each loss is a combination of two components: a

binned pose classification and a regression component. Any

backbone network can be used and augmented with three

fully-connected layers which predict the angles. These

three fully-connected layers share the previous convolu-

tional layers of the network.

The idea behind this approach is that by performing

bin classification we use the very stable softmax layer and

cross-entropy, thus the network learns to predict the neigh-

bourhood of the pose in a robust fashion. By having three

cross-entropy losses, one for each Euler angle, we have

three signals which are backpropagated into the network

which improves learning. In order to obtain a fine-grained

predictions we compute the expectation of each output an-

gle for the binned output. The detailed architecture is shown

in Figure 2.

We then add a regression loss to the network, namely a

mean-squared error loss, in order to improve fine-grained

predictions. We have three final losses, one for each angle,

and each is a linear combination of both the respective clas-

sification and the regression losses. We vary the weight of

the regression loss in Section 4.4 and we hold the weight of

the classification loss constant at 1. The final loss for each

Euler angle is the following:

L = H(y, ŷ) + α ·MSE(y, ŷ)

Where H and MSE respectively designate the cross-

entropy and mean squared error loss functions.

3.3. Datasets for Fine­Grained Pose Estimation

In order to truly make progress in the problem of predict-

ing pose from image intensities we have to find real datasets

which contain precise pose annotations, numerous identi-

ties, different lighting conditions, all of this across large

poses. We identify two very different datasets which fill

these requirements.

First is the challenging AFLW2000 dataset. This dataset

contains the first 2000 identities of the in-the-wild AFLW

dataset which have been re-annotated with 68 3D landmarks

using a 3D model which is fit to each face. Consequently

this dataset contains accurate fine-grained pose annotations

and is a prime candidate to be used as a test set for our task.

Second the BIWI dataset is gathered in a laboratory set-

ting by recording RGB-D video of different subjects across
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Figure 2. ResNet50 architecture with combined Mean Squared Error and Cross Entropy Losses.

different head poses using a Kinect v2 device. It contains

roughly 15,000 frames and the rotations are ±75◦ for yaw,

±60◦ for pitch and ±50◦ for roll. A 3D model was fit to

each individual’s point cloud and the head rotations were

tracked to produce the pose annotations. This dataset is

commonly used as a benchmark for pose estimation us-

ing depth methods which attests to the precision of its la-

bels. In our case we will not use the depth information nor

the temporal information, only individual color frames. In

Section 4.1 we compare to a very accurate state-of-the-art

depth method to ascertain the performance gap between ap-

proaches.

3.4. Training on a Synthetically Expanded Dataset

We follow the path of [2] which used synthetically ex-

panded data to train their landmark detection model. One

of the datasets they train on is the 300W-LP dataset which

is a collection of popular in-the-wild 2D landmark datasets

which have been grouped and re-annotated. A face model is

fit on each image and the image is distorted to vary the yaw

of the face which gives us pose across several yaw angles.

Pose is accurately labeled because we have the 3D model

and 6-D degrees of freedom of the face for each image.

We show in Section 4.1 that by carefully training on large

amounts of synthetic data we can begin closing the gap with

existing depth methods and can achieve very good accura-

cies on datasets with fine-grained pose annotations. We also

test our method against other deep learning methods whose

authors have graciously run on some of the test datasets that

we use in Section 4.1. Additionally in the same Section, we

test landmark-to-pose methods and other types of pose esti-

mation methods such as 3D model fitting.

3.5. The Effects of Low­Resolution

Currently there is need for head pose estimation at a dis-

tance and there exist multiple example applications in areas

such as video surveillance, autonomous driving and adver-

tisement. Future head pose estimation methods should look

to improve estimation for low-resolution heads.

We present an in-depth study of the effect of low-

resolution on widely-used landmark detectors as well as

state-of-the-art detectors. We contend that low-resolution

should worsen the performance of landmark detection since

estimating keypoints necessitates access to features which

disappear at lower resolutions. We argue that although de-

tailed features are important for pose estimation they are not

as critical. Moreover this area is relatively untapped: there

is scarce related work discussing head pose estimation at a

distance. As far as we know there is no work discussing

low-resolution head pose estimation using deep learning.

Deep networks which predict pose directly from image

intensities are a good candidate method for this applica-

tion because robustness can be built into them by modifying

the network or augmenting its training data in smart ways.

We propose a simple yet surprisingly effective way of de-

veloping robustness to low-resolution images: we augment

our data by downsampling and upsampling randomly which

forces the network to learn effective representations for var-

ied resolutions. We also augment the data by blurring the

images. Experiments are shown in Section 4.5

4. EXPERIMENTAL RESULTS

We perform experiments showing the overall perfor-

mance of our proposed method on different datasets for

pose estimation as well as popular landmark detection

datasets. We show ablation studies for the multi-loss. Addi-

tionally, we delve into landmark-to-pose methods and shed
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light on their robustness. Finally we present experiments

suggesting that a holistic approach to pose using deep net-

works outperforms landmark-to-pose methods when resolu-

tion is low even if the landmark detector is state-of-the-art.

4.1. Fine­Grained Pose Estimation on the
AFLW2000 and BIWI Datasets

We evaluate our method on the AFLW2000 and BIWI

datasets for the task of fine-grained pose estimation and

compare to pose estimated from landmarks using two differ-

ent landmark detectors, FAN [2] and Dlib [11], and ground-

truth landmarks (only available for AFLW2000).

FAN is a very impressive state-of-the-art landmark de-

tector described in [2] by Bulat and Tzimiropoulos. It

uses Stacked Hourglass Networks [16] originally intended

for human body pose estimation and switches the normal

ResNet Bottleneck Block for a hierarchical, parallel and

multi-scale block proposed in another paper by the same au-

thors [1]. We were inspired to train our pose-estimation net-

work on 300W-LP from their work which trains their net-

work on this dataset for the task of landmark detection. Dlib

implements a landmark detector which uses an ensemble of

regression trees and which is described in [11].

We run both of these landmark detectors on the

AFLW2000 and BIWI datasets. AFLW2000 images are

small and are cropped around the face. For BIWI we run

a Faster R-CNN [22] face detector trained on the WIDER

Face Dataset [32, 10] and deployed in a Docker con-

tainer [24]. We loosely crop the faces around the bounding

box in order to conserve the rest of the head. We also re-

trieve pose from the ground-truth landmarks of AFLW2000.

Results can be seen in Tables 1 and 2.

Additionally, we run 3DDFA [35] which directly fits a

3D face model to RGB image via convolutional neutral net-

works. The primary task of 3DDFA is to align facial land-

marks even for the occluded ones using a dense 3D model.

As a result of their 3D fitting process, a 3D head pose is

produced and we report this pose.

Finally, we compare our results to the state-of-the-art

RGBD method [33]. We can see that our proposed method

considerably shrinks the gap between RGBD methods and

ResNet50 [8]. Pitch estimation is still lagging behind in

part due to the lack of large quantities of extreme pitch ex-

amples in the 300W-LP dataset. We expect that this gap will

be closed when more data is available.

We present two multi-loss ResNet50 networks with dif-

ferent regression coefficients of 1 and 2 trained on the

300W-LP dataset. For BIWI we also present a multi-loss

ResNet50 (α = 1) trained on AFLW. All three networks

were trained for 25 epochs using Adam optimization[12]

with a learning rate of 10−5 and β1 = 0.9, β2 = 0.999
and ǫ = 10−8. We normalize the data before training by

using the ImageNet mean and standard deviation for each

Yaw Pitch Roll MAE

Multi-Loss ResNet50 (α = 2) 6.470 6.559 5.436 6.155

Multi-Loss ResNet50 (α = 1) 6.920 6.637 5.674 6.410

3DDFA [35] 5.400 8.530 8.250 7.393

FAN [2] (12 points) 6.358 12.277 8.714 9.116

Dlib [11] (68 points) 23.153 13.633 10.545 15.777

Ground truth landmarks 5.924 11.756 8.271 8.651

Table 1. Mean average error of Euler angles across different meth-

ods on the AFLW2000 dataset [35].

Yaw Pitch Roll MAE

Multi-Loss ResNet50 (α = 2) 5.167 6.975 3.388 5.177

Multi-Loss ResNet50 (α = 1) 4.810 6.606 3.269 4.895

KEPLER [14]† 8.084 17.277 16.196 13.852

Multi-Loss ResNet50 (α = 1)† 5.785 11.726 8.194 8.568

3DMM+ Online [33] * 2.500 1.500 2.200 2.066

FAN [2] (12 points) 8.532 7.483 7.631 7.882

Dlib [11] (68 points) 16.756 13.802 6.190 12.249

3DDFA [35] 36.175 12.252 8.776 19.068

Table 2. Mean average error of Euler angles across different meth-

ods on the BIWI dataset [6]. * These methods use depth informa-

tion. † Trained on AFLW

Yaw Pitch Roll Sum of errors

Multi-Loss ResNet50 (α = 1) 3.29 3.39 3.00 9.68

Gu et al. [5] 3.91 4.03 3.03 10.97

Table 3. Comparison with Gu et al. [5]. Mean average error of

Euler angles averaged over train-test splits of the BIWI dataset [6].

color channel. Note that since our method bins angles in

the ±99◦ range we discard images with angles outside of

this range. Only 31 images are not used from the 2000 im-

ages of AFLW2000.

In order to compare to Gu et al. [5] we train on three

different 70-30 splits of videos in the BIWI dataset and we

average our mean average error for each split. For this eval-

uation we use weight decay with a coefficient of 0.04 be-

cause of the smaller amount of data available. We compare

our result to their single-frame result which was trained in

the same fashion and we show the results in Table 3. Our

method compares favorably to Gu et al. and lowers the sum

of mean average errors by 1.29◦.

4.2. Landmark­To­Pose Study

In this set of experiments, we examine the approach of

using facial landmarks as a proxy to head pose and inves-

tigate the limitations of its use for pose estimation. The

commonly used pipeline for landmark-to-pose estimation

involves a number of steps; 2D landmarks are detected, 3D

human mean face model is assumed, camera intrinsic pa-

rameters are approximated, and finally the 2D-3D corre-

spondence problem is solved. We show how this pipeline

is affected by different error sources. Specifically, us-

ing the AFLW2000 benchmark dataset, we conduct exper-

iments starting from the best available condition (ground

truth 2D landmarks, ground truth 3D mean face model) and

examine the final head pose estimation error by deviating
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Figure 3. We show the effects of using different number of land-

mark points for 3D head pose estimation using ground truth fa-

cial landmarks and the ground truth mean face model on the

AFLW2000 dataset.

from this condition. For all of these experiments, we as-

sume zero lens distortion, and run iterative method based

on Levenberg-Marquardt optimization to find 2D-3D corre-

spondence which is implemented as the function SolvePnP

in OpenCV.

We first run the pipeline only with ground truth land-

marks, varying the number of points used in the optimiza-

tion method. We observe that in this ideal condition, using

all of the available 68 landmark points actually gives biggest

error as shown in Figure 3. Then, we jitter the ground truth

2D landmarks by adding random noise independently in x,

y direction per landmark. Figure 4 shows the results of this

experiment with up to 10 pixel of jittering. We repeat the

experiment with the same set of keypoints selected for Fig-

ure 3. Finally, we change the mean face model by stretching

the ground truth mean face in width and height up to 40%

Figure 5. Additionally, we also report results based on esti-

mated landmarks using FAN and Dlib in Figure 6.

The results suggest that with ground truth 2D landmarks,

using less key points produces less error since it’s less likely

to be affected by pose-irrelevant deformation such as facial

expression. However, the more points we use for correspon-

dence problem, the more robust it becomes to random jitter-

ing. In other words, there exists a tradeoff; if we know the

keypoints are very accurate we want to use less points for

pose, but if there’s error we want to use more points. With

estimated landmarks, it’s not clear how we can weigh these

two, and we find that using more points can both help and

worsen pose estimation as presented in Figure 6.

4.3. AFLW and AFW Benchmarking

The AFLW dataset, which is commonly used to train and

test landmark detection methods, also includes pose anno-

tations. Pose was obtained by annotating landmarks and

using a landmark-to-pose method. Results can be seen in

Table 4.

AFW is a popular dataset, also commonly used to test

landmark detection, which contains rough pose annotations.

It contains 468 in-the-wild faces with absolute yaw degree’s

up to ±90◦. Methods only compare mean average error for

yaw. Methods usually output discrete predictions and round

their output to the closest 15◦ multiple. As such at the 15◦

error margin, which is one of the main metrics reported in

the literature, this dataset is saturated and methods achieve

over 95% accuracy. Results are shown in Figure 7.

Using our joint classification and regression losses for

AlexNet [13] we obtain similar mean average error after

training for 25 epochs. We compare our results to the KE-

PLER [14] method which uses a modified GoogleNet for

simultaneous landmark detection and pose estimation and

to [19] which uses a 4-layer convolutional network. Multi-

Loss ResNet50 achieves lower Mean Average Error than

KEPLER across all angles in the AFLW test-set after 25

epochs of training using Adam and same learning param-

eters as in Section 4.1. These results can be observed in

Table 4.

We test the previously trained AlexNet and Multi-Loss

ResNet50 networks on the AFW dataset and display the re-

sults in Figure 7. We evaluate the results uniquely on the

yaw as all related work does. We constrain our networks to

output discrete yaw in 15 degree increments and display the

accuracy at two different yaw thresholds. A face is correctly

classified if the absolute error of the predicted yaw is lower

or equal than the threshold presented.

The same testing protocol is adopted for all compared

methods and numbers are reported directly from the associ-

ated papers. Hyperface [20] and All-In-One [21] both use

a single network for numerous facial analysis tasks. Hyper-

face uses an AlexNet pre-trained on ImageNet as a back-

bone and All-In-One uses a backbone 7-layer conv-net pre-

trained on the face recognition task using triplet probability

constraints [25].

We show that by pre-training on ImageNet and fine-

tuning on the AFLW dataset we achieve accuracies that are

very close to the best results of the related work. We do

not use any other supervisory information which might im-

prove the performance of the network such as 2D landmark

annotations. We do however use a more powerful backbone

network in ResNet50. We show performance of the same

network on both the AFLW test-set and AFW.

4.4. AFLW2000 Multi­Loss Ablation

In this section we present an ablation study of the multi-

loss. We train ResNet50 only using a Mean Squared Error

(MSE) Loss and compare this to ResNet50 using a multi-

loss with different coefficients for the MSE component. The
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Figure 4. We show the effect of jittering landmark points around their ground truth position on the task of 3D head pose estimation on

AFLW2000 to simulate the effects of noise in the facial keypoint detector. We repeat this experiment four times with different number of

landmarks. For all experiments we use the ground truth mean face model for the landmark-to-pose alignment task.

Figure 5. We show the effects of changing the 3D mean face model on the task of 3D head pose estimation from 2D landmarks. We use

2D ground truth landmarks and modify the mean face model by stretching its width and height.

Yaw Pitch Roll MAE

Multi-Loss ResNet50 (α = 1) 6.26 5.89 3.82 5.324

AlexNet (α = 1) 7.79 7.41 6.05 7.084

KEPLER [14] 6.45 5.85 8.75 7.017

Patacchiola, Cangelosi [19] 11.04 7.15 4.4 7.530

Table 4. Mean average errors of predicted Euler angles in the

AFLW test set.

weight of the Cross-Entropy loss is maintained constant at

1. We also compare this to AlexNet to discern the effects of

having a more powerful architecture.

We observe the best results on the AFLW2000 dataset

when the regression coefficient is equal to 2. We demon-

strate increased accuracy when weighing each loss roughly

with the same magnitude. This phenomenon can be ob-

served in Table 5.

4.5. Low­Resolution AFLW2000 Study

We study the effects of downsampling all images from

the AFLW2000 dataset and testing landmark-to-pose meth-

ods on these datasets. We compare these results to our

method using different data augmentation strategies. We

test the pose retrieved from the state-of-the-art landmark

detection network FAN and also from Dlib. We test all

methods on five different scales of downsampling x1, x5,

α Yaw Pitch Roll MAE

ResNet50 regression only 13.110 6.726 5.799 8.545

Multi-Loss ResNet50 4 7.087 6.870 5.621 6.526

2 6.470 6.559 5.436 6.155

1 6.920 6.637 5.674 6.410

0.1 10.270 6.867 5.420 7.519

0.01 11.410 6.847 5.836 8.031

0 11.628 7.119 5.966 8.238

Multi-Loss AlexNet 1 27.650 8.543 8.954 15.049

0.1 30.110 9.548 9.273 16.310

0.01 25.090 8.442 8.287 13.940

0 24.469 8.350 8.353 13.724

Table 5. Ablation analysis: MAE across different models and re-

gression loss weights on the AFLW2000 dataset.

x10 and x15. In general images are around 20-30 pixels

wide and high when downsampled x15. We then upsample

these images and run them through the detectors and deep

networks. We use nearest neighbor interpolation for down-

sampling and upsampling.

For our method we present a multi-loss ResNet50 with

regression coefficient of 1 trained on normal resolution im-

ages. We also train three identical networks: for the first one

we augment the dataset by randomly downsampling and up-

sampling the input image by x10, for next one we randomly

downsample and upsample an image by an integer ranging

from 1 to 10 and for the last one we randomly downsample
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Figure 6. Using estimated 2D landmark points, this experiment shows the 3D pose estimation error depending on how many facial keypoints

are used.

Figure 7. AFW pose benchmark result along with other meth-

ods [21, 20, 14, 36].

and upsample an image by one of the following integers 1,

6, 11, 16, 21.

We observe that from the get-go our methods show better

performance than pose from the Dlib landmarks, yet pose

from the FAN landmarks is acceptable. Pose from the FAN

landmarks degrades as the resolution gets very low which

is natural since landmarks are very hard to estimate at these

resolutions especially for methods that rely heavily on ap-

pearance. Pose from the network without augmentation

deteriorates strongly yet the networks with augmentation

show much more robustness and perform decently at very

low resolutions. Results are presented in Figure 8. This

is exciting news for long-distance and low-resolution head

pose estimation.

5. CONCLUSIONS AND FUTURE WORK

In this work we show that a multi-loss deep network can

directly, accurately and robustly predict head rotation from

image intensities. We show that such a network outperforms

landmark-to-pose methods using state-of-the-art landmark

detection methods. Landmark-to-pose methods are studied

in this work to show their dependence on extraneous factors

Figure 8. Mean average error for different methods on the down-

sampled AFLW2000 dataset in order to determine robustness of

methods to low-resolution images.

such as head model and landmark detection accuracy.

We also show that our proposed method generalizes

across datasets and that it outperforms networks that regress

head pose as a sub-goal in detecting landmarks. We show

that landmark-to-pose is fragile in cases of very low res-

olution and that, if the training data is appropriately aug-

mented, our method shows robustness to these situations.

Synthetic data generation for extreme poses seems to be

a way to improve performance for the proposed method as

are studies into more intricate network architectures that

might take into account full body pose for example.
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