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Abstract

We develop a person identification approach - Clothing

Change Aware Network (CCAN) for the task of clothing as-

sisted person identification. CCAN concerns approaches

that go beyond face recognition and particularly tackles the

role of clothing to identification. Person identification is a

rather challenging task when clothing appears changed un-

der complex background information. With a pair of two

person images as input, CCAN simultaneously performs a

verification task to detect change in clothing and an identi-

fication task to predict person identity. When clothing from

the pair of input images is detected to be different, CCAN

automatically understates clothing information while em-

phasizing face, and vice versa. In practice, CCAN outper-

forms the way of equally stacking face and full body context

features, and shows leading results on the People in Photo

Album (PIPA) dataset.

1. Introduction

Person identification is a key task for many applications,

such as access control, video surveillance, abnormal event

detection and criminal identification. For person identifi-

cation, face information plays a crucial role [18, 22, 23, 27]

when near-frontal faces can be clearly captured by a camera.

The typical workflow of a face recognition system consists

of face detection, frontalization and similarity retrieval [23].

With the wide usage of deep convolutional neural networks

(CNNs), 1:1 face verification and 1:N (N<1000) recogni-

tion are believed to be well-addressed and ready for certain

commercial applications [22]. However, it remains chal-
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Figure 1: Face and body context are often concatenated for

person identification. However, complications arise when

people change their clothing. By explicitly modeling cloth-

ing change, we aim to improve identification accuracy es-

pecially when a person dresses differently.

lenging when frontal face images are not feasible or N is

large. In this case, full-body recognition becomes com-

plementary [4]. While early efforts tend to use full-body

features, recent work shows that explicitly modeling local

attributes greatly boosts performance [1, 11, 15, 31].

In this paper, we address a specific type of person iden-

tification problem: dynamically registering a person in a

uncontrolled scenario, and later on identifying the person in

another uncontrolled scenario. The time interval between

the registration and the identification stage can range from

minutes to hours. Since both the registration and identifica-

tion scenarios are uncontrolled, many subject and environ-

mental challenges remain there, e.g., face visibility, body
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pose variation, illuminating, and partial occlusion. Face

recognition alone, due to the uncontrolled visibility of face,

is inadequate, and complementary full-body recognition be-

comes a must. For convenience we name the addressed

problem instant person identification.

Such an instant identification task can be needed in many

applications. A typical example is in hospitals. There is a

recent trend to monitor the physiological status of patients

via cameras [17, 25]. Instant person identification is critical

for setups aimed at monitoring multiple patients simultane-

ously [24]. Similar application scenarios are hotels, banks

or restaurants. In these scenarios, persons, typically cus-

tomers, first go to a reception desk for registration. Here

a camera is installed to capture photos of the customers as

gallery set. Later on, these persons will stay in an area wait-

ing for their service. With another camera capturing probe

photos, instant person identification can be performed, as a

basis for tasks like physiological status monitoring, emotion

recognition, and abnormal event detection.

Note that instant person recognition can be treated as a

sub-problem of person re-identification. It addresses instant

appearance changes such as clothing and pose but excludes

ones caused by aging. Moreover, we particularly focus on

application scenarios where facial images are clear. There-

fore, our work is more similar to the photo-level recognition

problem [1, 11, 13, 15, 16, 31] and not the standard re-ID

problem in video surveillance [32].

To handle the problem, intra-person variations such as

lighting, pose and clothing must be alleviated so that inter-

person differences can be enlarged. Convolutional neu-

ral networks (CNN) is shown to be able to well model

deviations such as face angle, body pose and illumina-

tion [10, 13, 29]. However, clothing change is rarely ad-

dressed. In the aforementioned scenarios, clothing is actu-

ally changed very often. For example, a patient/customer

often takes a jacket, hat or scarf off or puts one on for

the reason of temperature difference between outdoor and

indoor environments. When equally leveraging face and

body information, which is typically used in literature [6],

different clothing features tend to mislead the recognition

result. In this case, face should play a more critical role

while clothing should be understated. Recent efforts ad-

dress the relative importance of face and body attributes by

directly learning weights from training data [31]. However,

this needs large training data and still does not model cloth-

ing change explicitly. The existing way to detect clothing

change needs a clear segmentation of clothing from the rest

of body [6], which is challenging in itself.

This paper presents a principled way, called Clothing

Change Aware Network (CCAN), to explicitly model cloth-

ing change for person identification. CCAN takes a pair

of features of two person photos as input. When clothing

from the input pair is detected to be different, CCAN au-

tomatically adjusts the relative weights of face and body

for identification. In this way, CCAN handles the intuition

that clothing context should be understated when a person

is found to have clothing changed. At the core of CCAN is

a 3-layer neural network, which simultaneously performs a

verification task to detect clothing change, and an identifi-

cation task to predict person identity. The two tasks are cou-

pled in the network in this way: on one hand, when cloth-

ing is changed, other unchanged contexts should be more

employed; otherwise, clothing and other attributes should

both be picked. In practice, CCAN outperforms the case of

simply stacking face and body features in all experiments,

and shows top results on the public People in Photo Album

(PIPA) dataset [31].

Ahead of applying CCAN, we apply two other deep con-

volutional models to explicitly convert face and body im-

ages into feature vectors, respectively. For face converting,

we apply the model suggested in [26] with slight modifica-

tions. For body converting, we randomly crop patches out

of body image to feed into a single ResNet-50 network [9].

Compared to others [13,15,31], the random cropping elim-

inates the need of semantic attribute detection and reduces

the number of needed deep models.

2. Related Work

Face recognition Before deep learning became popu-

lar, the three top-ranked Commercial Off The Shelf face

recognition systems correctly matched probed faces against

a large collection of 1.6 million identities with an 82%-92%

accuracy rate [20]. However, when tested on a 1:N identifi-

cation benchmark constructed using the LFW dataset [2],

the rank-1 accuracy of the best system dropped to about

56%, even though the gallery has only a couple of thou-

sand identities. In 2014, Facebook published a milestone

paper that applied deep learning to face recognition [23]

for the first time. The reported 1:1 verification accuracy on

the LFW dataset reached 97.35%, 27% higher than the best

counterparts. Since then, various deep learning models have

been developed to address the problem [19, 22, 26, 28, 30].

On the standard LFW tests, the latest results have outper-

formed human beings [14]. It is widely believed that the 1:1
verification and the 1:N identification with N<1000 have

been well solved. The remaining challenges are large-N

identification and face recognition in the wild. The recent

trend is to use more training data and develop lighter models

for front-end applications. The public MegaFace [18] and

MS-Cele-1M [8] challenges are the current leading datasets

for large-scale face recognition benchmarking.

Person identification The work most relevant to ours is

person recognition in photo albums [1, 11, 13, 15, 16, 31].

These daily life photos have rich variations such as age,

pose, cluttered background, lighting and clothing, which

together make identity recognition challenging. Anguelov
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Figure 2: Some PIPA identities that CCAN predicts correctly while Face+Body (equally concatenating face and body features

but without detecting clothing change, detailed in the experimental section) makes mistakes. Most of the cases have clothing

changed. Without bewaring of the change, Face+Body still heavily relies on body information, leading to these errors.

et al. [1] addresses the problem by fusing all contextual

cues based on a Markov random field framework. Unfor-

tunately, only small-scale benchmarking was performed at

that time. Recently, Zhang et al. [31] introduced the large-

scale PIPA dataset for this task. They fuse a comprehensive

list of body parts from poselet [3] and prove that context

cues beyond faces help improve person recognition accu-

racy. Using deep learning models to compensate for pose is

also a key of their approach. Oh et al. [11] thoroughly in-

vestigate the roles of various cues, including different body

regions, scene context and long-term attributes such as age

and gender. Li et al. [15] leverage more visual contexts,

not only in person-level but also the contexts among per-

sons in the same photo. While these efforts tend to fuse

various contexts, they do not emphasize critical ones partic-

ularly. Most recently, Kumar et al. [13] particularly address

body poses in person recognition. They tackled the problem

by learning multiple models at specific poses. As a result,

they achieved top results among others on the PIPA dataset.

The latest proposed congenerous cosine loss [16] so far per-

forms best on PIPA. Our approach particularly addresses the

cue of clothing. Our logic is intuitive - when clothing is

changed, clothing-related cues should be less important for

the recognition task; otherwise, clothing is equally impor-

tant as other contexts. The intuition is well proven by the

top results that we achieved on the PIPA dataset.

3. CCAN

The workflow of CCAN is depicted in Figure 3 and ex-

plained in the caption. CCAN itself consists of three mod-

ules - a CNN model for face representation, another CNN

for body context representation, and a 3-layer neural net-

work for the prediction of clothing change and identity. Our

face representation and body context representation models

are based on ResNet [9] and is illustrated below. We adjust

the face and body context representation models to increase

cost-efficiency while preserving recognition performance.

3.1. Face Representation

We follow the CNN architecture introduced in [26] for

face representation. At each block of the model, we add a

residual shortcut to speed up model training. We also re-

place the Rectified Linear Units (ReLUs) [12] with a Max-

Feature-Map (MFM) function [28] to shrink model size.
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Figure 3: Workflow overview. CCAN jointly performs person identification and clothing change verification (checking if

clothing has changed or not). Due to the existence of verification, CCAN requires an image pair of the same person as input.

First, face and full body are detected and cropped on the image pair. Subsequently, on each of the cropped body image, 4

patches covering different body portions are further randomly cropped out. Finally, CCAN takes input of the cropped body

patches (totally 4×2=8) and the cropped face pair, and predicts person identity and clothing change status simultaneously.

The loss function we employed is a combination of Soft-

max loss and Center loss [26].

Implementation: The network takes a 112x112 cropped

face image as input. The face image is first aligned using

the detection and alignment tools provided in Dlib 1. When

the alignment fails, we keep the unaligned face images for

both training and testing. 100×100 patches are then ran-

domly cropped from the 112×112 input and fed into the

network. Each pixel (in [0, 255]) in the RGB images is nor-

malized by subtracting 127.5. The dataset used for training

is MegaFace [18] that includes 4.7 million images of 672

thousand identities. In practice we only select 20,000 iden-

tities that have the most instances, resulting in roughly 1.2

million training images. The model is trained for 1 million

iterations using an initial learning rate of 0.01 and multi-

plied by 0.1 after every 200,000 iterations. On an NVIDIA

Titan X card, the training takes 180 hours. The size of the

trained model is 14.4M, only 1/40 of that of VGG-face [19]

and similar to the Lightended models [28].

3.2. Body Context Representation

The body region has rich contextual information such as

clothing style, gesture and hand poses. To capture these rich

contexts, as shown in Figure 3, we perform full body de-

tection and randomly crop 4 patches out of each detected

body image. Unlike [31], random cropping saves the need

of training various local attribute detectors, which reduces

the number of used models. Meanwhile, with a high prob-

ability, random cropping covers both clothing and clothing-

1http://dlib.net/

independent contexts, which is critical for the subsequent

clothing change aware feature fusion.

A single model is used to represent each cropped body

patch. For this purpose, we fine-tune a ResNet-50 [9] model

that was pretrained on ImageNet [5]. First we add a fully-

connected layer on top of the global average pooling layer

of the ResNet-50 model. This helps us reduce the output

feature dimension from 2048 to 512. We then add a classi-

fication layer on the top. Data employed for the fine tuning

is the training split of the PIPA dataset [31].

Input to the fine-tuned network are 4 cropped patches of

size 224×224. Given a detected body image we first resize

its short side to 256 while keeping its Height/Width ratio.

We then generate random crops by arbitrarily sampling a

[0.8, 1.0] portion of the resized image and picking a random

aspect ratio out of [3/4, 4/3]. We use a batch size of 64 to

fine-tune the pre-trained ResNet-50 model. The learning

rate is initialized at 0.01, and multiplied by 0.1 after every

80 epochs. The fine tuning takes 150 epochs in total. In the

test phase, the feature representation used is the output of

the added fully connected layer, which is 512-dimensional.

Thus, the final length of body features is 512×4=2048.

3.3. Clothing Change Aware Identification

Once face and body contextual features are generated,

they are fed into the subsequent Clothing Change Aware

Network (CCAN), which performs identity recognition and

clothing change detection simultaneously. The two tasks are

coupled in such a way that CCAN learns shared features

that are identity-friendly, especially when clothing change
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Figure 4: Detailed overview of CCAN. There are two parallel streams. The blue stream takes two face images of the same

individual as input. The FaceRepresentation module converts the face images to feature vectors, as described in Section 3.1.

The converted features then go through a 4-layer fully-connected network for getting a predicted identity. The yellow stream

takes 4×2=8 body patches of the same individual as input. The BodyContextRepresentation module converts the patches

to feature vectors, as described in Section 3.2. After that is a 3-layer fully-connected network, taking the converted body

features as input and outputting if clothing is changed or not. There is a path linking the yellow FC(4096×512) layer to the

blue FC(1024x512) layer, which associates the identity and labeled clothing information to together influence the learning of

all layers. Best viewed in color.

is detected. Identity recognition is a multi-class classifica-

tion problem, the output corresponding to the number of

identities. Clothing change detection is a verification task,

with the binary output being changed or not changed. To

join the two tasks, we need patch pairs as input. Below are

the details.

Architecture: Figure 4 details the architecture of

CCAN. There are two parallel streams corresponding to the

two tasks. The first stream is a 4-layer fully-connected net-

work performing person identification. The output length

corresponds to the number of identities in the training set.

The second one is a 3-layer fully-connected network per-

forming clothing change verification. The output length is

2, for YES and NO. We tried adding more layers but did

not see any improvement. The two networks are associated

by adding a path from the yellow FC(4096×512) layer to

the blue FC(1024x512) layer. Let x1 and x2 represent the

extracted face and body features, respectively. The combi-

nation of face and body features is defined as

f(x) =

[

F (x1,w
1

1
)

F (x2,w
2

1
)

]⊺ [

w
1

2

w
2

2

]

. (1)

The function F (x1,w
1

1
) and F (x2,w

2

1
) represent the 1st

fully connected layers on the two parallel streams, respec-

tively - that is, the yellow and blue FC(4096×512) lay-

ers. Denote F (x1,w
1

1
) = σ(w1

1
x1) and F (x2,w

2

1
) =

σ(w2

1
x2), where σ denotes ReLU [12] and the biases are

omitted for simplifying notations. Since the outputs from

F (x2,w
2

1
) are also employed for clothing change verifi-

cation, they will distribute at different statue if the input

body features x2 are from different statue (same clothing vs

different clothing). Consequently, the identity and clothing

information are coupled to influence all the layers through

gradient back-propagation. In this way, the model learns

identity-friendly features, which may be independent of

clothing if change is detected.

Training: CCAN accepts as an input a pair of two face-

body-stacked features of the same person. If the paired fea-

tures have differently labeled clothing, they are a positive

instance; otherwise, they are negative. We use a batch size

of 128, which is actually 128 feature pairs. To form these

pairs, we first randomly select 128 features out of the train-

ing set. From the identity associated with each selected fea-

ture, we then randomly choose another feature of the same

identity to form a training pair. If a person only has one

feature, it is duplicated to form a pair.

Inference: In the test phase, there are gallery and probe

sets, both of which are never used for training. Therefore,

we cannot rely on the predicted identity of CCAN. Instead

we only use intermediate output as feature representation.

Specifically, we use the output of the blue FC(1024x512)

layer as features. The gallery features will be pre-extracted.

Each probe feature is then matched against the gallery set,

and the best match will be picked. Similarly to training,

test needs a pair of two input face-body-stacked features

of the same individual from either probe or gallery. In the

training phase we do not consider the order of the 4 input

body features. Therefore, to enhance performance, we do a
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Method Face Body Context #Models Accuracy

PIPER [31] X X 109 83.05%

naeil [11] X X 6 86.78%

Li et al. [15] X X 6 88.75%

PSM [13] X X 7 89.05%

COCO [16] X X 4 92.78%

Face X - 1 85.05%

Body Context - X 1 86.57%

Face + Body X X 2 90.86%

CCAN X X 3 92.59%

Table 1: Person recognition result on PIPA [31] test set. Note that we get comparable state-of-art result with fewer model.

comprehensive image pairing. Let {x}1:N denote the face-

body-stacked feature set belonging to an individual. Each

time we first pick a feature xi with i from 1 to N. Then we

sequentially pair xi with xj with j from 1 to N, and feed

(xi,xj) into CCAN for feature extraction. Totally we get

N such feature vectors for each i. Subsequently we average

these N features and treat the averaged vector as the repre-

sentation of xi. For individuals having only one face-body-

stacked feature, we simply duplicate the feature for pairing.

Finally we get N such averaged feature vectors correspond-

ing to the N face-body-stacked inputs. In our experiments

N differs for different identities. We used two different de-

cision metrics for the probe-gallery set matching:

• Averaging: We average all features of each identity

and perform an average-average vector matching;

• Majority Voting: Each feature of a probe identity is

matched against each individual feature of each gallery

identity. The gallery identity which is most often voted

in the individual matchings, is the best match.

Implementation: Training data is the train split of the

PIPA dataset [31]. We manually label the clothing informa-

tion of all the 36,352 images of 1775 identities. The model

is initialized with the Xavier distribution [7]. The initial

learning rate is 0.01, and multiplied by 0.1 after every 12

epochs. The training totally takes 25 epochs. On a NVIDIA

TITAN 1080TI card, the training takes less than 1 hour.

4. Experiments

We conducted experiments on two public datasets -

the People in Photo Albums (PIPA) dataset [31] and the

Celebrity In Place (CIP) dataset [30]. Only the setting of

person identification was covered. In all experiments we

only use the training split of the PIPA dataset for model

training and validation. The rest are used for evaluation.

All of our results were evaluated on the same machine.

4.1. Results on PIPA

PIPA contains 63,188 instances of 2,356 identities. Orig-

inally only face regions were labeled. To crop body regions,

we apply person detection based on Faster R-CNN [21].

Then we compute the overlap area between each detected

body and each labeled face region. If the overlap is larger

than 75% of the face label, we say the face and body are

from the same person. For each identity we randomly as-

sign each of his/her photos as probe or gallery. No image

appears in both gallery and probe. If a person only has one

photo, the person will be added to gallery as a distractor.

Table 1 shows the results of comparing CCAN with five

recent approaches and three baselines. ‘Face’ indicates us-

ing face feature only. Similarly, ‘Body Context’ indicates

using body features only. ‘Face + Body’ refers to simply

concatenating face and body features. CCAN shows top re-

sults, very close to the best result from COCO [16], which

was reported very recently. For the result, CCAN uses three

deep learning models while COCO relies on four.

Table 2 shows CCAN under two different matching met-

rics. CCAN consistently outperforms all the baselines. Es-

pecially, Body-only appears to drop more dramatically un-

der the majority voting rule, which is also the leading rea-

son of the significant drop of Face+Body. However, CCAN

appears to be more robust to the different rules.

Figure 2 shows examples that CCAN correctly predicts

while Face+Body fails at. Most of the cases have clothing

changes, which Face+Body is not aware of. Figure 5 shows

examples that CCAN fails to identify. In these cases, not

only clothing but also face appearance vary a lot.

4.2. Results on CIP

The CIP dataset contains over 38k images with 4,611

celebrities involved in 16 places. The dataset was origi-

nally collected for celebrity retrieval but perfectly fits our

research owing to the clothing changes at different places.

We did the same steps as on PIPA to get full body label-

ing. For each identity we randomly assign each of his/her

pictures to gallery or probe. The identities only having one
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Method Averaging Majority Voting

Face 85.0% 82.4%

Body Context 86.6% 78.1%

Face + Body 90.9% 84.3%

CCAN 92.6% 92.4%

Table 2: Person recognition results on PIPA test set under

two different decision metrics.

Method Averaging Majority Voting

Face + Body 30.4% N/A

CCAN 35.6% 35.8%

Table 3: Person recognition results on CIP test set under

two different decision metrics.

picture are simply added as gallery distractors. Totally we

get 4,104 gallery identities and 3,176 probe identities.

On the dataset we only compared CCAN with

the approach of concatenating face and body features

(Face+Body). The results are shown in Table 3. CCAN out-

performs Face+Body by 5%. On the dataset the averaging

and majority voting metrics show similar results. Note that

the overall accuracy is apparently lower than that of PIPA

due to three reasons. First, CCAN is trained on the train-

ing split of PIPA, and not fined-tuned for CIP; Second, CIP

images are captured at six very different places, therefore

variations being large (examples shown in Figure 5); Third,

many CIP identities have only one gallery or probe photo,

which severely affects matching robustness. Note that the

Majority Voting rule was not applied to Face+Body, mainly

due to its long running time (over 10 days).

4.3. Results on PIPA+CIP

The last experiment we did is follow the PIPA protocol

but incrementally adding CIP as gallery distractors. The

purpose is to test the accuracy of CCAN under different

gallery sizes. The decision metric used is averaging.

Figure 6 summarizes the results. When 100 distractors

are added, CCAN beats Face+Body by 2%, similar to that

of no distractors (see Table 1). As distractors grows to [300,

700], CCAN and Face+Body perform similarly, indicating

that distractors have a key side effect. Alongside the further

growth of distractors, the gain of CCAN goes up from 2%

to 4%, showing that modeling clothing change in CCAN is

more helpful for large-scale gallery set.

5. Concluding Remarks

This paper presents CCAN, a deep learning approach

for person identification in the wild. CCAN is logically

straightforward - when clothing is changed, we should sup-

press the role of clothing; otherwise, clothing should be

equally used to boost the identification accuracy. CCAN

Figure 5: Examples that CCAN mis-recognized. CIP has

more significant clothing changes. Since CCAN is trained

on PIPA, it does not tackle well the changed CIP clothings.
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Figure 6: Results of adding CIP as gallery distractors to

PIPA. Each time we randomly picked 100, 300, 500, 700,

900, 1,500 and 2,000 CIP distractors. Each experiment is

repeated five times and the average accuracy is reported.

handles the logic automatically, without needing to do any

extra heuristic judgment. The advantage of CCAN was well

verified on the public PIPA [31] and CIP [30] dataset. Fu-

ture work will be to 1) fine-tune the body context model on

larger datasets and 2) apply CCAN to a realistic scenario,

e.g. recognizing patients in a hospital.
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