
Markov Chain Neural Networks

Maren Awiszus, Bodo Rosenhahn

Institut für Informationsverarbeitung

Leibniz Universität Hannover

www.tnt.uni-hannover.de

Abstract

In this work we present a modified neural network model

which is capable to simulate Markov Chains. We show how

to express and train such a network, how to ensure given

statistical properties reflected in the training data and we

demonstrate several applications where the network pro-

duces non-deterministic outcomes. One example is a ran-

dom walker model, e.g. useful for simulation of Brown-

ian motions or a natural Tic-Tac-Toe network which ensures

non-deterministic game behavior.

1. Introduction

A Markov model is a mathematical model to represent a

randomly changing system under the assumption that future

states only depend on the current state (Markov property). It

is used for predictive modeling or probabilistic forecasting.

A simple model is a Markov chain which models a path

through a graph across states (vertices) with given transi-

tion probabilities on the edges. An example application is a

random walker generated by sampling from a joint distribu-

tion using Markov Chain Monte Carlo. Random walks have

applications in various fields, such as physics, ecology, eco-

nomics, chemistry or biology as they serve as a fundamental

model to record stochastic activity. Besides Random walker

models, various computer science applications require con-

trolled stochastic behavior, e.g. to generate AIs with smart

but non-deterministic patterns for game play or for a more

natural behavior of Chat Bots in Human-Computer Interac-

tion.

Artificial Neural networks are the current state-of-the art

method for solving various computer vision and machine

learning tasks. Due to the increased computational possi-

bilities using GPUs and the availability of big data, top rank

scores in various challenges are obtained with deep neu-

ral networks. Due to their underlying concept of connected

neurons across hidden layers, once trained, a neural network

behaves in a deterministic fashion. Taking an interactive

game or a human-computer chat as examples, it leads (a) to

a foreseeable reaction given a specific game configuration

or (b) always to the same answer for a given comment in a

dialog system. Overall, it results in a non-natural behavior

for human-computer interaction. Indeed, when training a

neural network with different possible (but legal) outcomes,

it leads to slow convergence but still deterministic behavior

when e.g. using a soft-max decision. A common solution to

this issue is to train in a network the distributions of possible

outcomes and then to sample from this. Probabilistic sam-

pling from a regression network requires a post-processing

step in the test phase which is undesired in many applica-

tions.

Contributions

In this paper we address all above aspects and present

a neural network model which is capable to (a) simulate

Markov Chains, (b) we show how to train such a network

with given statistical properties reflected in the training data

and (c) demonstrate several applications where the network

produces random outcomes. Since the stochastic decision

process is integrated by using a random node value as ad-

ditional input, no post-processing (e.g. sampling from a

result-distribution) is necessary.

Experiments are conducted for (a) a probabilistic graph-

ical model (e.g. a 2D and 3D random walker) (b) a natural

Tic-Tac-Toe or Flappy Bird gameplay (c) a text-synthesizer

given an input text database (in our example from a poem

or books like Moby Dick from Herman Melville or Curious

George by H.A. and M. Rey and (d) for image completion

(MNIST) or the synthesis of facial emotions.

2. Foundations and Stochastic Neural Net-

works

This section summarizes the foundations and some state-

of-the art for this work with a focus on Markov Chains and

Neural Networks.

2.1. Graphical Models

A probabilistic graphical model (PGM) is a probabilis-

tic model for which a graph G = (V,E) with given edges

2293

www.tnt.uni-hannover.de

Figure 1. Example Markov Model

E and vertices V is used to model the conditional depen-

dence between random variables [12]. Bayesian networks

or Markov random fields are famous examples with numer-

ous successful applications in computer vision and machine

learning [2, 6, 28, 18]. A stochastic process has the so-

called Markov property if the conditional probability dis-

tribution of future states of the stochastic process only de-

pends on the current state and not on the sequence of events

that preceded it. Thus for S being a discrete set with a

respective discrete sigma algebra the Markov property is

given as

P (Xn = xn|Xn−1 = xn−1, . . . , X1 = x1) =

P (Xn = xn|Xn−1 = xn−1)

Well known are two types of Markov models, (a) the vis-

ible Markov model, and (b) the hidden Markov model or

HMM. In (visible) Markov models (like a Markov chain),

the state is directly visible to the observer, and therefore

the state transition (and sometimes the entrance) probabil-

ities are the only parameters, while in the hidden Markov

model, the state is hidden and the (visible) output depends

on the (non-visible) state. The most likely hidden states

can be recovered e.g. using the famous Viterbi algorithm

[27]. Thus, each state has a probability distribution over

the possible output tokens. In this work we will focus on

Markov Chains, simply given as a Graph G = (V,E, T)
with E ⊆ V × V and Ti,j = p(i|j) for i, j ∈ E. Where

T gives the transition probabilities along the edges between

vertices. Random walks (as considered later) or the Gam-

bler’s ruin problem are famous examples of Markov Chain

processes. For further details, the reference [1] is highly

recommended.

2.2. Neural Networks

A neural network is a collection of connected neurons

[10]. Each (artificial) neuron is defined as a weighted sum

of input values (given as inner product and an added bias

value) passed on to a so-called activation function (e.g. a

sigmoid function or a linear function [19]) to produce an

output (or activation). Combining an input vector with sev-

eral neurons yields a so-called layer and connecting the out-

come of a layer to further layers leads to a neural network.

Such a network is usually optimized by gradient descent on

an output error using backpropagation. In this work we used

the well established stochastic gradient descent method [3].

Due to the huge amount of parameters to optimize, weight

sharing (using e.g. convolutions [9, 20]) or local receptive

fields [26] can drastically avoid overfitting and support the

convergence of the neural network. In this paper we do

not discuss the different variants of neural networks and

their possibilities for optimization, autoencoders [17], in-

cremental learning [14, 15] or data management [4]. We

only want to state, that neural networks are commonly used

for competing in different benchmarks with remarkable per-

formance [13, 21, 11]. For this work it is only important to

clarify that a neural network is a deterministic function and

in its nature not suited for modeling Markov chains.

2.3. Stochastic and probabilistic neural networks

The most similar approach to our proposed contribution

are so-called stochastic neural networks [25]. They are a

type of artificial neural networks where random variations

are built into the network. This can be realized by modify-

ing the involved neurons with stochastic transfer functions,

or by giving them stochastic weights. These modifications

can be useful for optimization problems, since the random

fluctuations can help to overcome local minima [8]. In a

similar fashion, noisy activation functions have been pro-

posed [7]. To our experience, the stochastic weights or ac-

tivations can lead to unpredictable network behavior, since

a slight change in an early layer can propagate through the

whole network. Therefore, it is nearly impossible to en-

sure desired statistical properties of such networks, unless

they are explicitly modeled [24]. A probabilistic neural

network (PNN) is a special feed-forward neural network

[22, 5]. Herefore, the probability distribution of each pos-

sible class is approximated by a distribution, e.g. using a

Parzen window and a non-parametric function. Then for a

new input vector the PDF for each possible class is evalu-

ated and Bayes rule is applied for the final decision. The al-

located class is the class of the highest posterior probability.

The resulting network consists of four layers, namely the

input layer, hidden layer, pattern layer and the output layer.

Since the pattern layer is usually representing the likelihood

for a specific class, sampling from this layer could be done

to produce random outcomes. This again leads to an ex-

tra analysis step during testing which we will avoid in this

paper. Instead, we shift the information of the outcome dis-

tribution into the training phase to sample solutions directly

from the network. This will be achieved by an extra random

input value for the first layer.

2294

Figure 2. Markov Chain Neural Network

3. Markov Chain Neural Network

In the following we describe the basic idea for our pro-

posed non-deterministic MC neural network, suitable to

simulate transitions in graphical models. Similar to the pre-

vious section we start with a Graph G = (V,E, T) with V

a set of states, E ⊆ V × V and a matrix with transition

probabilities T = V × V with
∑|V |

i T (i, j) = 1. A simple

example is shown in Figure 1 with the states 1 . . . 4 and the

respective transition matrix.

This simple example can be used to model e.g. a random

walker with 4 oriented steps (left, right, up, down) with the

property that the walker is changing the orientation with ev-

ery step. Given a graphical model and an initial state (e.g.

1 = (1, 0, 0, 0)T representing the first node the next states

are 2,3,4 with a likelihood of 1

3
. An obviously naive op-

tion to train a network is to define a four-dimensional (bi-

nary) input and output vector, to generate training examples

while traversing through the network and to use this to train

a neural net. Unfortunately, a neural net behaves in a de-

terministic way, so that for a given input, the outcome of

a network is always the same. Alternatively, the transition

probability of [0, 1

3
, 1

3
, 1

3
]T can be trained and then with a

sampling on the target distribution, a random decision can

be made. To allow for non-deterministic behavior and to

avoid the sampling from a target distribution, the goal is

to transfer the predefined statistical behavior of a graphical

model to a neural net. To achieve this, we propose the exten-

sion of the input data with an additional value containing a

random number r ∈ [0, 1] and a special learning paradigm,

described in the following.

The topology is visualized in Fig. 2. The random num-

ber is connected to the neural net as additional input value

during training and testing. It can be implemented by sim-

ply using a five-dimensional input vector (r, 1, 0, 0, 0) fol-

lowing the above example, or by using an additional ran-

dom bias value, with a random value for a test input. The

key idea is that the random value steers the output vector

following the predefined statistical behavior: For a given

training set D with input vector xi and output vector (or

value) yi,

D = {(xi, yi)}
n

i=1

we approximate p(yi|X = xi) as a (in general multivariate)

discrete probability distribution. Thus for yi ∈ 1 . . . c, and

Y = {y1 . . . yc} and a given input vector X ,

c∑

i=1

p(yi|X) = 1

E.g. assuming the transition probabilities from Figure 1,

it implies the row-sum to be one. From the training data it is

simply approximated as the relative frequency (the empiri-

cal probability),

p(yi|xi) =
‖ {(x = xi, y = yi) ∈ D}‖

‖ {(x = xi, y ∈ Y) ∈ D}‖

Now, it is possible to generate from such a histogram an

arbitrary number of input/output pairs. They reflect a pre-

defined reaction, given a random value as additional input

node so that the distribution of possible output vectors cor-

responds to the distribution of output vectors in the training

data. Thus, we augment the input data vectors with an ad-

ditional random value and use these random values to draw

a distribution of possible outputs.

Similar to importance sampling [23], we accumulate for

each possible input state the corresponding cumulative fre-

quency, e.g. for our simple random walker model and start

node (1, 0, 0, 0)T we gain [0, 1

3
, 2

3
, 1]. Then we generate

new training data by drawing a random number r and by

identifying the appropriate decision from the accumulated

interval. The following example shows some example train-

ing data which are generated from this strategy:

Input Output

(0.5, 1, 0, 0, 0) → (0, 0, 1, 0)
(0.2, 1, 0, 0, 0) → (0, 1, 0, 0)
(0.8, 1, 0, 0, 0) → (0, 0, 0, 1)
(0.9, 1, 0, 0, 0) → (0, 0, 0, 1)
(0.1, 1, 0, 0, 0) → (0, 1, 0, 0)

. . .

Figure 3 shows some example random walks which have

been generated from a neural net by feeding the output as

new input vector into the net. The images show the realiza-

tion of 20.000 steps with (1, 0, 0, 0) as start node. The state

probability converges to 1

4
, thus each state has the same

visiting expectation likelihood. Simply speaking, the ad-

ditional random value acts as a switch which defines in a

predefined manner the respective outcome. E.g. for a start

node (1, 0, 0, 0) and a random value between [0, 1

3
] the out-

come is (0, 1, 0, 0), whereas for a random value between

] 1
3
, 2

3
] the outcome is (0, 0, 1, 0), etc. Figure 4 shows exam-

ples of a neural net which generates 3D random walks.

2295

Figure 3. Realizations of different 2D random walks generated

with a Markov Chain Neural Network

Figure 4. Realizations of different 3D random walks generated

with a Markov Chain Neural Network

4. Experiments

Starting from this toy example, we now demonstrate fur-

ther examples on how to use the MC-neural network.

4.1. Tic­Tac­Toe

The famous game is a paper-and-pencil game for two

players, X (black) and O (white). They take turns by mark-

ing the spaces in a 3 × 3 grid. The player who succeeds in

placing three own marks in a horizontal, vertical, or diago-

nal row wins the game. Due to its simplicity, there are only

26,830 possible games up to rotations and reflections, thus

it is a nice example for a neural network to learn.

For the generation of training data we implemented a

non-stupid rule-based player which follows the following

steps

1. Can I win ?

2. Do I have to defend ?

Figure 5. Distribution of possible reactions during a Tic-Tac-Toe

game. A high gray value (towards white) indicates a high prob-

ability whereas a low gray value (towards black) indicates a low

probability. The selected field has the likelihood 0 since it can

not be selected anymore. Left : Ground truth (the statistics of the

training data reactions when (top) the middle place has been se-

lected or (b) when the upper left corner has been selected. Right:

Distribution of reactions of our trained MC network during 1000

artificial games with the selected middle or upper left space as

starting point. As can be seen, the neural network produces reac-

tions which are close to the distribution of reactions in the training

data.

Figure 6. Performance over several Epochs of training. After each

training epoch, 1000 games between the MC neural network (lines

with dots) and the rule-based player (solid lines) are simulated. It

results in a ratio of win (black), pair (blue) and lost (red) games.

The diagram shows, that the Markov Chain neural network con-

verges faster and yields a slightly better playing performance. (The

Figure is best viewed in color)

3. Can I make a move to build a fork ?

4. Make a random move

We simulated several thousand games and use the reac-

tions of the winner during the games as output and as input

the configuration of the preceding step. Thus, the input and

output configuration is a nine-dimensional vector with val-

ues [−1, 0, 1]. The value −1 represents the black player X ,

0 is an empty field and 1 is the white player O. As neural

2296

Figure 7. Two example games of our proposed neural network.

The neural network (white) starts, produces different start configu-

rations at the first move and is later able to generate a fork scenario

so that the black player (the rule based player) looses the game.

Figure 8. A neural network playing Flappy Bird perfectly.

network we decided for a simple shallow fully connected

structure with [10 : 80 : 30 : 9] layers, where the fist layer

of dimension 10 is the configuration and the additional ran-

dom value and 9 is the outcome configuration.

From the games, it is now easy to determine from the

training data the amount of possible reactions which have

some usefulness for the neural net. E.g. when consider-

ing Figure 5, the upper left image shows the distribution of

possible reactions to a start configuration of player X(black)

who has selected the middle field. Thus it can be seen, that

the best option is to react by using a corner field (bright

value). In the lower left example, player X(black) selected

the upper left corner and the worst reaction is to select a di-

rect neighbor (right, bottom) field. Indeed, if a user selects

one of these fields, there is a 100% winning strategy for the

black player X.

If player X(black) starts with a middle field, due to the

symmetry properties it is not important with which corner

player O (white) reacts, so that all remaining fields have

a certain likelihood for a reaction, which can be estimated

from the training data and embedded into the MC neural

net, as described in the previous section. The right image

of Figure 5 shows the distribution of reactions after 1000

trials with a predefined start configuration which is the X

(black) player selecting the middle field (top) or upper left

field (bottom). It is clearly visible, that the distribution is

very close to the distribution of the training data. Thus, a

useful natural reaction pattern is trained and the network

can play in a non-deterministic but appropriate fashion. We

tested the neural network with several players and all con-

firmed the natural gameplay of our network. One reason is

also, that there is a probability for the network to produce

non-optimal and variable moves.

Figure 6 demonstrates the performance of the trained

MC neural network over training several epochs in com-

parison to a classical network. The MC network converges

faster. In the authors opinion one reason is, that the same in-

put in the training data can lead to different outputs. Thus,

the gradients can start to contradict each other yielding to

a slower convergence. For the MC network, the additional

random number allows for a suited separation of the behav-

iors and thus a faster and better convergence and game play.

Figure 7 shows two games between the Markov Chain

neural network and the rule based player. The neural net-

work starts (white) and already as first move, different con-

figurations are produced by the network. In the remainder

of the game, the network produces a fork scenario, so that

the rule based player looses the game.

4.2. Reinforcement Learning

This paradigm can also be applied in the context of re-

inforcement learning to balance possible reactions to their

overall gain. In Q-learning an agent transitions between

states, executes actions and gains a reward to be optimized.

The non deterministic behavior of a Markov chain neural

network can be easily integrated in an agent to explore the

state space of a game. The rewards are correlated to the im-

pact of an action, so that more successful activities appear

more often in the training data and are thus more likely to be

selected. Figure 8 shows three screen shots of a neural net-

work which perfectly plays the game Flappy Bird, in which

the inputs consist of the proposed random value, the posi-

tion of the bird, the position of the pipes and the distance

between the bird and the pipes.

4.3. Text synthesis

The next example is text synthesis. Based on given input

letters (we use 7 letters as input, which are encoded as their

ASCII-value), the network predicts a new letter to continue

the text. This allows the synthesis of new text blocks, e.g.

useful for artificial chat-bots. In this experiment we use the

poem The cat with the hat by Dr. Seuss. It has a length of

1620 words and 7086 characters. Given 7 input characters,

it is now possible to determine the statistics for the follow

up character and to train the Markov Chain neural network.

Whereas the input is an 8-dimensional vector containing the

Markov Chain and the ASCII-values of the characters, the

output is a 256 dimensional decision vector with binary val-

ues, indicating the decision as ASCII value.

After training the network, it is possible to start with a

2297

Figure 9. Left: Input Text, fragment from The cat with the hat (Dr. Seuss). Right: Synthesized text with Markov property along the words.

fragment and then to continue the synthesis of the text. Fig-

ure 9 shows on the left an input text fragment of the network

and in the right some synthesized sentences. The figure also

indicates repetitions of characters in the text, so that it is

easy to verify how the network jumps through the input text

while synthesizing the text.

We also trained a text-synthesizer from books like Moby

Dick or Curious George. Whereas the first contains 211.000

words which are arranged in a 211.000 dimensional dictio-

nary vector, the second one only contains 950 words yield-

ing a much smaller dictionary. Here the intention is not

to learn successive letters, but consecutive words, directly

from the local co-occurrence of the surrounding words.

Thus, for training we look up for each position in the text a

predefined amount of consecutive words (e.g. 6). E.g. from

the sentence There now is your insular city of the Manhat-

toes, belted round by wharves as Indian isles by coral reefs-

commerce surrounds it with her surf. We select belted round

by wharves as Indian and lookup their respective dictionary

entry numbers, e.g. [120, 745, 823, 774890, 132]. To ac-

count for the order of the words, the input training vector

is zeros and the values of the above positions are initial-

ized with 1

7−i
. Thus, the words are ordered with respect to

the positions by using the weight in the input vector. Thus,

words close to the next words have a higher weight and

therefore a higher importance for prediction. For both ex-

ample books, after training of a 5 layer neural network, the

network was able to produce realistic text fragments. An

example produced by the network is The man took off the

bag. George sat on a little boat, and a sailor rowed them

both across the water to a big Zoo in a prison.

Even though the generated text appears partially useful,

the overall generated sentences are not very smart since the

global context of the text is ignored.

4.4. Image completion

In the next example we use the MNIST database [16] and

train a network which uses as input the upper left quarter of

an image and as output the complete image. Thus, the goal

of the network is to fill in the missing information in the im-

age. As the solution to the input is ambiguous, a classical

neural network has severe problems to find an appropriate

mapping and thus, ends up in a mixture of possible solu-

tions, see Figure 10. In contrast, our MC network allows

for a clear separation of possible solutions, so that several

possible answers are generated, see Figure 11.

For this experiment we used a simple shallow network

with 500 hidden units.

In the following example we use the jaffee-database as

data source. The database consists of several frontal face

images of actors performing different emotions (anger, dis-

gust, fear, happy, surprise, neutral).

Our application uses an image part as input and our MC

neural network to generate a similar face with a different

emotion. For this we first classify the ID of the person and

use this input value, together with the random value as in-

put for our network. If we use an equal distribution for the

emotion changes, different random emotions are generated

independently from the current emotion. Some examples

are shown in the right of Figure 12.

2298

Figure 10. Left: Input Image fragment. Right: Outcome of a de-

terministic Neural network. As can be seen, mixtures of possible

solutions are generated.

Figure 11. Left: Input Image fragment. Right: Different generated

solutions from the proposed Markov Chain network.

Figure 12. Left: Input Face part (used for identification). Right:

Synthesized faces with Markov property along emotions.

5. Summary and Discussion

In this work we present a modified neural network model

which is capable to simulate Markov Chains. We show how

to train such a network with given statistical properties re-

flected in the training data and demonstrate several appli-

cations where the network produces random outcomes for

generating a random walker model or a natural Tic-Tac-Toe

gameplay. The key idea is to add an additional input node

with a random variable which allows the network to use it as

a switch node to produce different outcomes. Even though

the network is acting in a deterministic fashion, due to the

random input it produces random output with guaranteed

statistical properties reflected in the training data. The MC

network is based on a statistical analysis of the training data

and does not require further post-processing (e.g. sampling

from a distribution of solutions). The network is straight

forward to implement. It allows natural game play, ambigu-

ous image completion or a more natural chat avatar as pos-

sible application.

References

[1] C. M. Bishop. Pattern Recognition and Ma-

chine Learning (Information Science and Statistics).

Springer-Verlag New York, Inc., Secaucus, NJ, USA,

2006. 2

[2] A. Blake, P. Kohli, and C. Rother. Markov Random

Fields for Vision and Image Processing. The MIT

Press, 2011. 2

[3] L. Bottou. Stochastic Learning, pages 146–168.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

2

[4] P. S. Crowther and R. J. Cox. A method for optimal di-

vision of data sets for use in neural networks. Springer

Berlin / Heidelberg, Lecture Notes in Computer Sci-

ence, 3684:1–7, 2005. 2

[5] H. Farhidzadeh. Probabilistic neural network

training for semi-supervised classifiers. CoRR,

abs/1509.01271, 2015. 2

[6] L. Fei-Fei, R. Fergus, and P. Perona. Learning gen-

erative visual models from few training examples: An

incremental bayesian approach tested on 101 object

categories. Comput. Vis. Image Underst., 106(1):59–

70, Apr. 2007. 2

[7] C. Gulcehre, M. Moczulski, M. Denil, and Y. Bengio.

Noisy activation functions. In Proceedings of the 33rd

International Conference on International Conference

on Machine Learning - Volume 48, ICML’16, pages

3059–3068. JMLR.org, 2016. 2

[8] C. O. Justin Bayer. Learning stochastic recurrent net-

works. arXiv:1411.7610, 2015. 2

[9] K. Kavukcuoglu, P. Sermanet, Y. Boureau, K. Gre-

gor, M. Mathieu, and Y. LeCun. Learning convo-

lutional feature hierachies for visual recognition. In

Advances in Neural Information Processing Systems

(NIPS 2010), volume 23, 2010. 2

[10] M. Kearns and U. V. Vazirani. An introduction to com-

putational learning theory. MIT Press, 1994. 2

[11] F. Kluger, H. Ackermann, M. Y. Yang, and B. Rosen-

hahn. Deep learning for vanishing point detection us-

2299

ing an inverse gnomonic projection. In 39th German

Conference on Pattern Recognition, Sept. 2017. 2

[12] D. Koller and N. Friedman. Probabilistic Graphi-

cal Models: Principles and Techniques - Adaptive

Computation and Machine Learning. The MIT Press,

2009. 2

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Im-

agenet classification with deep convolutional neural

networks. In F. Pereira, C. J. C. Burges, L. Bottou,

and K. Q. Weinberger, editors, Advances in Neural In-

formation Processing Systems 25, pages 1097–1105.

Curran Associates, Inc., 2012. 2

[14] A. Kuznetsova, S. J. Hwang, B. Rosenhahn, and L. Si-

gal. Expanding object detector’s horizon: Incremen-

tal learning framework for object detection in videos.

IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2015. 2

[15] A. Kuznetsova, S. J. Hwang, B. Rosenhahn, and L. Si-

gal. Exploiting view-specific appearance similarities

across classes for zero-shot pose prediction: A met-

ric learning approach. Conference on Artificial Intel-

ligence (AAAI), Feb. 2016. 2

[16] Y. LeCun and C. Cortes. MNIST handwritten digit

database. 6

[17] P. Mirowski, M. Ranzato, and Y. LeCun. Dynamic

auto-encoders for semantic indexing. In Proceedings

of the NIPS 2010 Workshop on Deep Learning, 2010.

2

[18] O. Müller and B. Rosenhahn. Global consistency pri-

ors for joint part-based object tracking and image seg-

mentation. In IEEE Winter Conference on Applica-

tions of Computer Vision (WACV), Mar. 2017. 2

[19] T. Raiko, H. Valpola, and Y. LeCun. Deep learning

made easier by linear transformations in perceptrons.

In Conference on AI and Statistics (JMLR W&CP),

volume 22, pages 924–932, 2012. 2

[20] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carls-

son. Cnn features off-the-shelf: An astounding base-

line for recognition. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR) Workshops;

DeepVision workshop, 2014. 2

[21] J. Redmon and A. Farhadi. YOLO9000: better, faster,

stronger. CoRR, abs/1612.08242, 2016. 2

[22] D. F. Specht. Probabilistic neural networks. Neural

Netw., 3(1):109–118, Jan. 1990. 2

[23] R. Srinivasan. Importance Sampling: Applications in

Communications and Detection. Engineering online

library. Springer Berlin Heidelberg, 2002. 3

[24] Y. Tang and R. R. Salakhutdinov. Learning stochas-

tic feedforward neural networks. In C. J. C. Burges,

L. Bottou, M. Welling, Z. Ghahramani, and K. Q.

Weinberger, editors, Advances in Neural Information

Processing Systems 26, pages 530–538. Curran Asso-

ciates, Inc., 2013. 2

[25] C. Turchetti. Stochastic Models of Neural Networks.

IOS Press, Inc., 2004. 2

[26] D. Turcsany, A. Bargiela, and T. Maul. Local recep-

tive field constrained deep networks. Information Sci-

ences, 349–350:229–247, 2016. 2

[27] A. Viterbi. Error bounds for convolutional codes

and an asymptotically optimum decoding algorithm.

IEEE Transactions on Information Theory, 14:260–

269, 1967. 2

[28] L. Zhu, Y. Chen, and A. Yuille. Unsupervised learn-

ing of probabilistic grammar-markov models for ob-

ject categories. IEEE Trans. Pattern Anal. Mach. In-

tell., 31(1):114–128, Jan. 2009. 2

2300

