
 

 

 

Abstract 

 

Nowadays computer-assisted surgery (CAS) 

technologies have been widely used in many aspects of the 

medical field such as Minimally Invasive Surgery (MIS) or 

operation focusing on a small surgical site, which has 

provided significant benefits to patients. However, it is hard 

for surgeons to determine the accurate poses and 

surrounding circumstances of the endoscope, due to some 

restrictions such as narrow field of view (FOV) and 

misregistration. In this paper, we propose to apply 

ORBSLAM with a low-cost endoscope to estimate the 

location of endoscope and create a 3D map for the oral 

surgery scene, which imposes considerable challenges 

compared to other human tissue environments, because of 

the irregular shape, texture-less surface and non-rigid 

characteristics of the oral cavity. In general, it is very 

difficult to detect sufficient and effective data for Visual 

SLAM to realize accurate localization and 3D dense map 

mainly due to the scarce feature points extracted from 

tissues and the rare correct matches. In order to 

reconstruct a denser map for a texture-less oral cavity, 

laser light markers are used for generating more features, 

which can mitigate the problem of data scarcity. Besides, 

we have validated this approach with some experiments on 

a silicone model of human head. Comparisons between the 

trajectory/map obtained from ORBSLAM and the ground 

truth are also provided.  

1. Introduction 

Following with rapid development of medical 

technology, incredible advancements have been achieved in 

the clinical operation. Open surgeries which need to cut the 

tissue outside to get access directly to the surgical targets 
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can bring great pain and harm to patients such as relatively 

larger trauma and longer convalescence time, hence 

Minimally Invasive Surgery (MIS) has gained considerable 

attention and favor. Undoubtedly, the endoscope plays a 

key role in such surgeries to allow surgeons to perform 

examinations or operations in conjunction with other 

surgical instruments. However, the field of view (FOV) of 

the endoscope is narrow and limited, which makes it quite 

difficult to identify the surrounding conditions of the 

surgical target [1]. Besides, it cannot provide the intuitive 

depth information and relative position relationship due to 

the two-dimensional attribute of the endoscope images [2]. 

Furthermore, the 2D endoscopic video can only display the 

surface circumstance while lacking the capability to have an 

insight into the tissue structure beneath the organ surface. 

All the problems mentioned above lead to scarce useful 

information that can be provided to surgeons. That is to say, 

this technique requires a flexible and skillful operation for 

surgeons who should have rich related experience.  

In order to provide more effective auxiliary information 

for surgeons and reduce the risk of manipulation, the 

intelligent medical image technology to expand and 

enhance the endoscopic view contributes tremendously in 

computer-assisted surgery (CAS) field. Recently, quite a lot 

of techniques related to endoscopic videos have emerged or 

under investigation, trying to overcome the intrinsic 

drawbacks of the endoscope mentioned above, which opens 

the way for the development of the medical automatic 

intelligent system. 

Monocular Shape-from-Shading (SfS) can reconstruct 

the 3D structure of tissue surface without much 

modification to the endoscope [4]. However, it relies on an 

assumption related to image processing, namely the light 

source and the endoscope should keep a certain relative 

pose relationship [5]. Structrue-from-Motion (SfM) is 

another technique to obtain the 3D structure of the object 

scene which exploits the image sequence captured at 

different places by the camera. It has been applied to the 

endoscope as well considering some constraints related to 

deformation of the tissue. Nevertheless, SfM method deals 

with unordered sequences of the images and requires 

off-line patch optimization, which cannot satisfy some 

real-time requirement of operation. In addition, there is 
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another method named Visual Simultaneous Location and 

Mapping (Visual SLAM) which can cope with the real-time 

surgical navigation challenge and estimate the 

intra-operative map of the surgical site at the same time [1]. 

It can provide the surgeons with the immediate feedback 

including the endoscope location with respect to human 

tissues and the surrounding 3D map, and help them to make 

corresponding decisions precisely [6]. However, some 

challenges remain in this field. One of them is the 

homogeneous and texture-less tissue surface which is quite 

different from the man-made environment and hard to 

extract the features from. This kind of data scarce will have 

a fatal effect on the performance of Visual SLAM. The 

reflection property of wet soft tissues will also bring 

negative effects. Moreover, without robust feature 

correspondences, it is also impossible to get accurate 

localization and mapping in feature-based Visual SLAM 

[8][13]. Another problem existing in a surgical scene is the 

deformation of the human tissue arising from respiration, 

nerve impulse or interaction with the medical tools, which 

does not satisfy the premise of the application of Visual 

SLAM, that is, rigid environment, when the deformation of 

the tissue exceeds a limit [7][9]. The mismatched feature 

points will also cause the failure of Visual SLAM, so 

filtering all the biased data or outliers is quite important.  

Another common situation is the occlusion issue caused by 

the motion of the surgical instruments during the operation 

[10]. 

In this paper, we propose to use the ORBSLAM [11][12] 

with a low-cost endoscope to estimate its location and 

reconstruct the 3D scene in an oral cavity. As far as we 

know, this is the first time to apply ORBSLAM into the oral 

scene. To solve the data scarce problem due to low-texture 

surface, the laser light markers are used to mitigate data 

scarcity problem by creating more artificial features which 

are easily extracted to make correspondence and generate a 

denser map. In the following, the overall architecture of the 

system will be introduced and the results obtained from the 

experiments based on a silicone model of a human head will 

be presented and analyzed. 

2. Related work 

Visual SLAM has received wide attention recently 

because of the distinct advantages that it can provide 

real-time localization of the endoscope and generate an 

intra-operative map of the surgical scene at the same time. A 

monocular Visual SLAM algorithm based on EKF was 

proposed in the medical application and validated with 

human in-vivo endoscopic videos, which is non-invasive, 

convenient, fast, relatively accurate and robust [10]. 

However, it cannot obtain sufficient data (enough feature 

points) to create a dense map and the surgical environment 

is assumed to be rigid. In [9], ORBSLAM was first used in 

the endoscope tracking and 3D reconstruction, and the 

experimental object was in-vivo pigs. Semi-dense map of 

the tissues inside the pigs is generated by a modified 

matching method and its accuracy is about 3mm~4.5mm 

compared to computed tomography (CT) scan, while there 

is no quantitative analysis about the accuracy of the 

localization of the endoscope. Moreover, whether the 

algorithm is equally valid has not been tested when the 

deformation is getting larger. Another paper [14] proposed 

a quasi-dense reconstruction which is also based on 

ORBSLAM compared with the semi-dense map created in 

[9]. It includes two parts for densification. One is 

feature-based densification which involves both matched 

and unmatched features. The other is featureless depth 

propagation using NCC matching algorithm. In order to 

evaluate the accuracy, the CT model is used as the ground 

truth when aligning the SLAM reconstruction with the 

ground truth using best-fitting similarity transform [15]. 

The Root Mean Square (RMS) error is 4.9mm, which seems 

not accurate enough. In [16], Visual SLAM was also used to 

explore the complicated scene to overcome the drawback of 

the narrow FOV. Poisson Blending was used to promote the 

visual fidelity. Furthermore, Visual SLAM can also be 

applied in fetoscopic interventions with a stereoscopic 

camera mounted at the tip of a continuum robot [17]. 

EyeSLAM is a SLAM algorithm applied to human retina, 

which exploits the vessel detection and matching techniques 

[18]. 

Compared with all the related work above, we can find 

that all the techniques are most applied in the interior tissue 

of organisms, such as the liver, the esophagus and so on. 

Besides, the reconstruction maps is not accurate enough as 

shown in [9][14]. However, our application is an oral cavity 

which is quite different from other tissue surfaces. The 

problem of the scarce data and biased matches becomes 

more intractable. Our method is to combine ORBSLAM 

with artificial laser markers to realize accurate endoscope 

tracking and 3D denser oral reconstruction. 

3. System overview 

3.1. Parameter tuning of ORBSLAM 

ORBSLAM is one of the best Visual SLAM algorithms at 

the moment, which can provide relatively robust and 

accurate tracking and mapping. Besides, it can also tolerate 

some small deformation of the tissue while applying it to a 

medical application. 

In order to make ORBSLAM performs better in the oral 

cavity, we need to tune the parameters set up in the original 

ORBSLAM, whose application is mostly in the large 

man-made environment, quite different to our application. 

In order to mitigate data scarcity problem, here we set the 

maximum number of extracted feature points to 2000, 
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which can help to find more correspondence and generate 

more map points. Besides, biased matches will be more in 

texture-less and homogeneous tissue surface, so we 

decrease the threshold of Hamming distance by a factor 

0.95 to reduce the possibility of mismatching.  

3.2. System framework 

In this part, the system framework will be introduced. As 

we can see from Figure 1, the laser light will be projected 

into the oral cavity to produce artificial patterns which are 

beneficial to feature extraction in the texture-less and 

homogeneous surface of the oral cavity. The endoscope will 

be inserted into the mouth at an appropriate angle. While the 

endoscope is moved slowly to scan the whole oral cavity, 

the endoscopic video will be obtained for the following 

processing. 

 

Figure 1.  Schematic diagram of the oral SLAM with laser light 

generating an artificial pattern 

 

Figure 2.  The flowchart of our framework 

After completing the preparations including laser light 

setup and parameter tuning of ORBSLAM, the software will 

try to process the image sequence to get salient feature 

points. If all things go well, endoscope localization and 

reconstruction will be realized, shown in Figure 2. 

4. Experiment 

4.1. System setup 

Figure 3 shows the platform of our system. The software 

is run in Ubuntu 16.04 on an MSI laptop with 7th gen Intel 

Core i7 processor and 8G RAM. The monocular USB 

endoscope camera has a white LED whose lightness is 

adjustable. Its resolution is 640×480 pixels. The 

Electromagnetic Tracking System (or called EM Tracker) 

we use is 3DGuidance trakSTAR, which includes an 

electronics unit, a transmitter, sensors, cables and so on. It 

uses pulsed DC technology to track the position and 

orientation of the sensor. Here a sensor is attached to the 

endoscope to track the trajectory of the endoscope as its 

ground truth. In order to make the motion of the endoscope 

more stable and easy to control, a monitor stand is exploited 

to hold it. The silicone model we use is very close to the real 

texture and structure characteristics of human. Here the 

mouth is opened to a certain angle to make it easier to do the 

experiment. The laser light is fixed right above the mouth of 

the silicone model with a red holder. 

 

Figure 3.  System setup 

4.2. Oral SLAM without laser pattern 

After tuning the parameters of ORBSLAM, its 

performance in the oral cavity without the laser pattern will 

be introduced in this part. In Figure 4 (a-d), we can see that 

the oral cavity can be divided into several components, such  
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           (e)                                         (f)                                         (g)                                         (h) 

 
           (i)                                          (j)                                         (k)                                         (l) 

 

Figure 4.  ORBSLAM performance in the oral cavity without laser pattern. (a-d) Original endoscope camera images. (e-h) Gray images 

with extracted feature points. (i-l) Reconstructed map points and trajectories of the endoscope.   

as the teeth, tongue, hard palate, gingivae, and lips. All these 

parts are soft tissues without obvious textures except the 

teeth, which poses a great challenge to the ORBSLAM 

based on discrete feature extraction and correspondence. It 

is not easy to initialize for ORBSLAM in such scene 

because of scarce useful feature extraction and matching. 

Figure 4 presents 4 oral SLAM scenes in chronological 

order. We succeeded in initializing when the teeth came into 

the sight of the endoscope camera, shown in Figure 4 

(a)(e)(i). Then when the endoscope was moved slowly and 

stably, more map points were generated and the 

corresponding Keyframes were also recorded. Finally, the 

reconstructed map and trajectory of the endoscope are 

presented in Figure 4 (l).  

From the reconstructed maps in each step, we can find 

most of the map points correspond to teeth and their 

surrounding area. Other areas of the maps are very sparse 

due to the homogeneous and texture-less tissue surface. 

Besides, it should be pointed out that tracking always fails 

due to lacking of useful feature extraction when the tongue 

or the hard palate comes into most view of the endoscope. 

As we can see, the profile of the oral cavity map is barely 

visible, which is not friendly interactive information for 

surgeons. So the denser map which is much more helpful by 

exploiting more sufficient data must be created. More 

details of the map such as the number of Keyframes, map 

points, and matches are shown in Table 1. 

 

Table 1. Map information without laser pattern 

Images 

(Figure 4) 

Keyframes 

(No.) 

Map points 

(No.) 

Matches 

(No.) 

(a)(e)(i) 9 581 206 

(b)(f)(j) 29 1491 300 

(c)(g)(k) 35 1818 136 

(d)(h)(l) 43 1868 250 

 

4.3. Oral SLAM with laser patter 

From previous experimental results, we can see there are 

many blank areas or big holes in the generated maps due to 

scarce feature points in such sites.  

In order to reconstruct a denser map, the laser light is used 

to project laser patterns on the oral surface. By using this 

method, more feature points can be generated and the
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(a)                                         (b)                                        (c)                                         (d) 
 

 
           (e)                                         (f)                                         (g)                                         (h) 

 

 

           (i)                                          (j)                                         (k)                                         (l) 

 

Figure 5.  The ORBSLAM performance in the oral cavity with laser pattern. (a-d) Original endoscope camera images with laser patterns. 

(e-h) Gray images with extracted feature points. (i-l) Reconstructed map points and trajectories of the endoscope.  

initialization of ORBSLAM becomes easier and faster, 

which improves the performance in our application. In 

Figure 5(a-d), we can see the laser pattern is projected to the 

surface of the oral cavity model, and feature points can be 

extracted as shown in Figure 5 (e-h). Notably, more feature 

points can be extracted and they are well-distributed. The 

corresponding reconstructed maps and trajectories of the 

endoscope are displayed in Figure 5 (i-l). From the final 

reconstructed map shown in Figure 5 (l), we can have a 

better understanding about the profile of the oral cavity, 

which can give more auxiliary information for surgeons and 

do some help to real-time mesh-based denser scene 

estimation.  

Table 2. Map information with laser pattern 

Images 

(Figure 5) 

Keyframes 

(No.) 

Map points 

(No.) 

Matches 

(No.) 

(a)(e)(i) 3 631 429 

(b)(f)(j) 13 1906 683 

(c)(g)(k) 19 2384 717 

(d)(h)(l) 27 3133 668 

More details of the map such as the number of 

Keyframes, map points, and matches are shown in Table 2. 

3133 map points are generated here, which are much more 

compared to those (1868 map points) without laser patterns. 

 

 

Figure 6.  Keyframe positions of ORB-SLAM (green squares) and 

trajectory ground truth obtained from EM Tracker (red dots) 
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           (a)                                                       (b)                                                       (c) 

 

 
                                    (d)                                                       (e)                                                       (f) 

 

Figure 7.  The registration between the CT scan of the sillicone model and the point clound map obtained from ORBSLAM. (a-c) Original 

3D CT scan model (green mesh) and reconstructed map (red point cloud) from 3 different viewpoint. (d-f) corresponding semitransparent 

CT scan with reconstructed map which can provide sharper contrast 

Because a sensor of the EM Tracker is attached to the tip 

of the endoscope, it is easy to get the real-time positions of 

the endoscope as the ground truth, which is displayed by the 

red dots in Figure 6. Due to the high sampling frequency of 

the EM Tracker, all the ground truth data, shown as the red 

dots, seem to form a curve. However, due to the handheld 

endoscope which is affected by the unsteady hands, the 

ground truth curve is not smooth. In our application, we 

only record the positions of the keyframes, which are 

discrete points in order to save computing resources and 

improve the efficiency of ORBSLAM, instead of recording 

the positions of all the image frames. The Keyframe 

positions of the endoscope obtained from ORBSLAM are 

represented by the green squares, shown in Figure 6 as well. 

In the following, we will try to compare the measured data 

obtained from ORBSLAM with the ground truth to get the 

accuracy of our method. 

Significantly, the trajectory acquired from ORBSLAM is 

up to scale because the characteristic of the monocular 

endoscope, which cannot obtain the actual measured value 

directly, so if we want to compare the two objects 

(trajectory from ORBSLAM and the ground truth) with 

different scales, some registration methods should be 

exploited. With the estimation of the integrated scale factor, 

the registration problem can be defined as an optimization 

problem, shown as formula (1) and (2), according to 

[19][20].  

, , ,

( , , ) arg min || ||j i
R t s i j D

R t s gtruth sR m t
∈

= − ⋅ − , (1) 

 { }( , ) | ,  j iD i j gtruth G m M= ∈ ∈ ,           (2) 

 

where G is the set of all the points of the ground truth, while 

M is the set of all the points obtained from ORBSLAM. 

Then the RMS error between the tracked positions and the 

ground truth is 0.765 mm. 

    Besides, the accuracy of the reconstructed map should 

also be evaluated compared with the CT scan of the silicone 

model, using the same registration method mentioned 

above. In order to improve the registration speed, 6 points 

which are far away from the oral cavity are removed. This 

preprocessing will not exert much effects on our analysis 

because we only focus on the oral part. The final RMS error 

of the registration is 1.276mm obtained from the remaining 

3127 map points.  

As shown in Figure 7 (a-c), an original 3D CT scan model 

(green mesh) and its corresponding reconstructed map (red 

point cloud) from 3 different viewpoints are aligned. In 

order to show the distribution of the map points and their 

relative position relationship compared with the 3D CT scan 

model clearly, the corresponding semitransparent CT scan 

with reconstructed map is shown in Figure 7 (d-f). 

In order to present a better visualization in terms of the 

actual values of deviation, the color scale can be used here, 
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where the color saturation range [-1.276, 1.276] is set 

according to the RMS error, as shown in Figure 8. A more 

distinct map is shown in Figure 9 by removing the 

semitransparent CT model. 

 

 

Figure 8.  The color scale which can shown the distance compared 

with the CT reference is applied to the reconstructed map (aligned 

with semitransparent CT model). 

 

Figure 9.  The color scale which can shown the distance compared 

with the CT reference is applied to the separated reconstructed 

map.    

 

Figure 10.  The histogram shows the number of map points 

belonging to different distance ranges between the CT scan and 

the reconstructed map. 

 

Figure 11.  The remaining map after filtered with maximum and 

minimum threshold according to the computed RMS error 

(1.276mm) of the distances 

Moreover, for better understanding of the map accuracy 

compared with the CT ground truth, we can see the map 

point distribution changes for different distance ranges 

between the CT scan and the reconstructed map in the 

histogram shown in Figure 10. The remaining map after 

filtered with the maximum and the minimum thresholds 

based on the computed RMS error to remove the map points 

with large errors is shown in Figure 11. 

5. Conclusion 

In this paper, to realize the accurate localization of the 

endoscope and the 3D map reconstruction of the oral cavity, 

we propose to exploit ORBSLAM, one of the best 

algorithms, with a low-cost endoscope. However, it is very 

difficult to initialize ORBSLAM and reconstruct a dense 

map due to the insufficient data obtained from the tissue 

surface in the oral cavity. Given the challenging scene of the 

oral cavity which is wet, texture-less and homogeneous, 

laser patterns are applied to help to generate more feature 

points and matches to mitigate data scarcity. Besides, the 

parameters are tuned to acquire more feature points and 

toughen the standard to filter the mismatches. In this way, 

the initialization of ORBSLAM will be easier and faster, 

and a denser map can also be reconstructed compared to the 

map generated without laser patterns. The experiments have 

been carried out to demonstrate that the proposed method is 

feasible in the oral application scenario. The RMS error 

between the tracked position and the ground truth is 

0.765mm, which can meet the needs of most medical 

applications. Besides, the RMS error for the reconstructed 

map is 1.276mm, which is relatively accurate to provide 

more visualization information for surgeons and can be a 

basis for augmented reality (AR). In the future, non-rigid 

problems caused by the respiration, the motion of tongue or 

the interaction with surgical tools in oral cavity will be 

investigated. 
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