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Abstract

3D fluorescence microscopy continues to pose challeng-

ing tasks with more experiments leading to identifying new

physiological patterns in cells’ life cycle and activity. It

then falls on the hands of biologists to annotate this im-

agery which is laborious and time-consuming, especially

with noisy images and hard to see and track patterns. Mod-

eling of automation tasks that can handle depth-varying

light conditions and noise, and other challenges inherent

in 3D fluorescence microscopy often becomes complex and

requires high processing power and memory. This pa-

per presents an efficient methodology for the localization,

classification, and tracking in fluorescence microscopy im-

agery by taking advantage of time sequential images in 4D

data. We show the application of our proposed method on

the challenging task of localizing and tracking microtubule

fibers’ bridge formation during the cell division of zebrafish

embryos where we achieve 98% accuracy and 0.94 F1-

score.

1. Introduction

In cell biology, fluorescence microscopy allows the use

of fluorescent indicators to highlight specific targets such

as proteins, lipids, ions, etc. [33]. It allows higher visibil-

ity of their occurrence, activity and development, thus en-

abling numerous advancements in understanding cell phys-

iology. Nevertheless, it suffers in terms of image quality,

mainly due to the diffraction of light in the microscope op-

tics and often the limited light allowed in order to maintain

the cells alive in vivo experiments. To extract insights from

the imagery, there is usually a need to segment and classify

the various structures and objects of interest, in addition to

tracking them through time in live experiments. This is a

laborious and time-consuming task for human analysts, es-

pecially with large amounts of noisy imagery in which it is

often hard to see and track patterns.

A 3D microscopic image (x×y×z) is formed of z two di-

mensional depth-slices or layers, each of size x×y, at fixed

step size. Together a number of 3D images taken at fixed

sequential time periods form 4 dimensional data. Modeling

automation tasks with 3D or 4D data can result in high exe-

cution time and computation cost, in addition to disk space

and memory requirements especially with increasing num-

ber of depth-slices. While maximum or mean intensity pro-

jection methods are often used to convert 3D fluorescence

microscopy images into 2D images [23], we show that they

may not work well where an object of interest can vanish in

the conversion. An object vanishing can be attributed to a

combination of factors, such as: depth-varying lighting con-

ditions, low contrast-to-noise ratio, and small-sized objects.

These conditions are likely to occur with 3D fluorescence

microscopy imagery depending on the target of the fluores-

cent indicators. Additionally, the number of slices is of-

ten varying. This can occur when increasing the number of

slices is important to see more of the sample but is limited

by phototoxicity effects and speed of the system. Conse-

quently, biologists may choose to use a varying number of

slices during different periods of data acquisition.

In this work we present an efficient and practical method

for the localization and tracking of objects of interest in flu-

orescent microscopy imagery that suffer from these chal-

lenging conditions. Specifically, we present a method for

region of interest (ROI) extraction, 3D to 2D image com-

pression, classification, and tracking for handling elusive

patterns without the need for high processing power and

memory by taking advantage of the fourth dimension, time.

We demonstrate the efficiency and accuracy of this method

in handling depth-varying lighting conditions and noise,

low contrast-to-noise ratio, small objects of interest, and

varying number of slices, by applying it to the problem of

localizing and tracking mircrotubule fibers bridge formation

during cell division in zebrafish embryos (see Figures 1 and

2).

The paper is organized as follows: Section 2 presents re-

lated work, Section 3 describes the dataset, Section 4 details

the proposed method, Section 5 contains the experimental

results and finally, conclusion is presented in Section 6.
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Figure 1. Microtubule fibers organization during cell division. Red

fibers in the illustration represent microtubules [12]

2. Related Work

Fluorescence microscopy imagery often suffers from

noise. Some of the filtering mechanisms widely used in-

clude rolling ball [9], Gaussian blurring, and more advanced

spatial filters such as [15], [6], [3]. While some are more

computationally expensive than others, spatial filters in gen-

eral tend to smooth out the edges. Other methods that

specifically target microscopy and medical images include

[39, 22, 17, 44, 25, 43, 21, 31, 24]: In [39] the noise is

modeled as additive noise using spatial filters that is esti-

mated at every point. In [22] the authors try to speed up

the process in [39] by making use of multiple channels in

fluorescence imagery when they are well separated. In [17]

noise reduction is posed as a maximum a posteriori estima-

tion problem and solved using a stochastic random field. It

works on contrast to noise ratio higher than 10db. Recently

principle component analysis has inspired and been used in

denoising methods such as [44, 25]. [43] transforms mixed

poisson and gaussian noise into additive gaussian noise to

be easily denoised. In [21, 31] structure and edges are bet-

ter preserved but at the expense of more noise in the re-

sulting image. [24] targets poisson noise. It works well

with low signal to noise ratio but not so well with low con-

trast to noise ratio. In our work, the dataset we use (Section

3) is characterized by depth-varying noise, low contrast-to-

noise ratio, and small objects of interest. Our proposed so-

lution reduces noise from the slices and combines them in

a 2D representation that amplifies the regions of interest to

be used in classification, without sacrificing performance or

having a complex, hard to tune model.

Segmentation allows us to localize the objects of inter-

est such as cells or nuclei. Some of the popular segmen-

tation methods in computer vision and biomedical imagery

include watershed and its variants [38, 4, 40], morphologi-

cal and thresholding methods such as top hat transform [5]

with otsu thresholding [28] are used in [41], and deep neu-

ral networks as in [13, 1, 32, 37]. Some methods target

3D imagery specifically such as [10, 8]. Recently [30] was

shown to give better segmentation results in biomedical im-

ages than [2, 32] by creating dense connections among fea-

tures from different scales that are obtained using dilated

convolutions. However, our goal here is not segmentation

in itself but rather localization. We create an inexact or

semi-segmentation of the objects of interest by constructing

a binary mask for each slice in a 3D image and combining

them using maximum projection to create a mask for the

entire stack of slices making up the 3D image. The objects

in the mask are localized by their centroids. They represent

the fluorescence objects in the image. More details are in

Section 4.1.

There are various methods for classification. In [11] a

weighted support vector machine is used. [16] uses a ran-

dom forest that is applied iteratively over different segmen-

tations to select the best one. [29] uses convolutional blocks

that are learnt using K-SVD. While methods such as support

vector machines (SVM) or random forests mainly rely on

manually selected features as in [11, 29], convolutional neu-

ral networks (CNN) learn the features that are useful for the

classification task. The seminal AlexNet [20] won the Ima-

geNet Large Scale Visual Recognition Challenge competi-

tion, and was followed by other outperforming CNNs such

as [42, 34, 18]. CNNs were also adopted in microscopy

images, for example [27]. As the layers of the network go

deeper, more information can be extracted and higher accu-

racy is achievable, especially with larger input size. How-

ever the greater the number of weight parameters that need

training, the longer the network takes to train, the harder it

is to configure, and the more processing memory and power

required. Here, we use a shallow CNN that is fed relatively

small 2D patches around regions of interest. The classifica-

tion results across the lifetime of the object of interest are

used to vote for the final classification of that object. Details

are in Sections 4.4 and 4.5.

Tracking objects such as cells throughout timeframes of

microscopic images in a video capture is often performed

using Bayesian filtering and its variations [36]. Kalman and

Particle filters are particularly popular [14, 7, 35]. While

bayesian filters are complex, recently recurrent neural net-

work was also used for multiple target tracking [26]. In this

work, with the observation that an object is the closest to its

location in the previous timeframe, we assume a restricted

random walk model (Section 4.3), and since the shape of

an object can change between sequential timeframes, the

model is independent of appearance. This results in a sim-

ple tracking model as explained in Section 4.3.

3. Dataset

We are using fluorescence microscopy imagery of ze-

brafish embryo obtained from The Elia Lab for cellular

imaging in Ben-Gurion University1. The optical trans-

parency property of zebrafish embryo makes them ideal

for studying the physiological activities that occur within.

The captured imagery represents a recording of cells divi-

1http://lifeserv.bgu.ac.il/wb/elianat/
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Figure 2. Sample slices from a single timeframe. The Z number

indicates the slice number ranging from 1 to 30. The arrow points

to a bridge formation. The pink and yellow rectangles are enlarge-

ments of bridge and nucleus locations, respectively.

sion within the embryo. Here, the fluorescence markers tar-

get the tubulin where the organization of microtubule fibers

changes during cell division as shown in Figure 1. The goal

is to track the bridge formation of the microtubule fibers

over time as a way to analyze the timing of the abscission

process (stages 4 and 5 in Figure 1).

A dataset capture consists of consecutive timeframes,

each consisting of between 28 and 31 depth slices of 512

× 512 pixels. The images are 0.324 microns per pixel, with

Z step-size of 0.9 microns and 2 minutes interval between

consecutive frames. Figure 2 shows some sample slices

from a single timeframe. Tracking the bridge formations

like the one in Figure 2 indicated by the arrows in slices

8, 9, and 10 is a laborious and time consuming task for bi-

ologists. Our objective is to automate the localization and

tracking of these bridges. For training and evaluation pur-

poses we are given the location of the bridges in each time-

frame as bounding rectangles.

4. Method

Below is an outline of our suggested approach for lo-

calizing and tracking the bridge formations followed by a

detailed description of the steps involved.

We define a region of interest (ROI) as an area that poten-

tially contains a bridge. We first identify the ROIs in each

slice of a timeframe as a binary mask of the slice. The 3D

mask formed from the stack of slice masks is then collapsed

using maximum projection into a 2D mask that highlights

the ROIs in that timeframe as a whole. Similarly, the 3D im-

age slices are compressed into a 2D image using weighted

averaging that is based on the ROI 3D mask obtained pre-

viously. Using this 2D image representation, the objects

retrieved from the ROIs are tracked through time as well

as passed to a convolutional neural network for classifica-

tion. The tracking information along with the classification

are used to localize a bridge throughout the timeframes of

a capture. The following sections provide detailed descrip-

tion of each step.

Figure 3. Steps for obtaining ROI mask.

4.1. Acquiring Regions of Interest (ROI)

Figure 3 shows an outline of the process to get the ROIs

in each timeframe. Here we present a detailed description

of that process.

An inherent property of fluorescence microscopy im-

agery is the non-uniform noise across the slices that is a

mixture of Gaussian and Poisson or shot noise [17]. To get

our ROIs, we want to highlight the fluorescence areas and

smoothen out the background. This is achieved by applying

a median filter followed by adaptive Gaussian filter, also

known as a Wiener filter. We then perform subtractive lo-

cal contrast normalization on the filtered image [19]. The

result is an image that highlights locations with higher vari-

ance than the filter used in the subtracted image. Locations

that have positive contrast with respect to their surrounding

pixels are then obtained by convolving the image with 8 (3

× 3) filters; each have a value of 1 in the center pixel, a

value of -1 in one of the edge pixels, and zeros everywhere

else (see Figure 3). A maximum over all 8 convolutions is

thresholded on the contrast value obtained and the size of

the connected component at each pixel. The thresholding

on the size of the connected components is specially im-

portant to avoid getting scattered outliers around the image.

The resulting image is thus the slice mask. Figure 4 shows

the stages for getting the slice mask for 3 samples.

Having obtained a mask for every slice in a timeframe, a

maximum over all the slice masks gives the ROIs mask for

the timeframe as a whole. We call that a summary mask.

Figure 5 shows samples of the summary mask.

4.2. 3D to 2D Representation

The slice masks are used to combine the slices into a

representative 2D image of the timeframe. They are com-

bined in a weighted average manner such that areas con-

taining ROIs in a slice get higher weight from that slice
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Figure 4. Samples from the steps for obtaining a slice ROI mask.

Rows represent different slice samples A, B, and C. Columns: (a)

original slice image (b) filtered image (c) subtractive LCN (d) slice

ROI mask (e) slice ROI mask overlaid over original image.

Figure 5. Sample summary masks of 2 different timeframes in the

dataset.

Figure 6. Sample slices from a timeframe showing a bridge ex-

hibiting low contrast to noise ratio. Z is the slice depth, the boxes

indicate the bridge location. Second row is the bridge location

magnified. Third row is the outcome of the filtering and weighted

averaging proposed.

compared to other slices. We experiment with 2 strate-

gies: first, equal contribution strategy, where for each

pixelmask(X,Y, Z) = 1 in the slice mask at depth Z a 60

× 60 square region around it in that slice is considered to

contribute equally to the final image by setting W (X−30 :
X+30, Y : 30 : Y +30, Z) = 1. Then the final value of any

pixel(X,Y ) = 1
∑depth

Z=1
W (X,Y,Z)

∑depth

Z=1 pixel(X,Y, Z).

Second, a Gaussian contribution strategy, where instead

of equal contribution around pixelmask(X,Y, Z) = 1 in

the slice mask at depth Z, we use a 120 × 120 Gaussian

weight matrix with σ = 10 and scaled such that the cen-

ter weight = 1. Since a pixel contribution can vary when

considering the application of the Gaussian weight to all

the slice-mask’s 1 pixels, the highest weight is used. Us-

ing a similar equation as before, the final value of any

pixel(X,Y ) = 1
∑depth

Z=1
W (X,Y,Z)

∑depth

Z=1 pixel(X,Y, Z)×

W (X,Y, Z). For all other pixels that have no specific slice

contribution the average over all slices is used. The pixel

intensity values in the weighted averages are not from the

original slice images but rather the filtered slices as de-

scribed in Section 4.1, where the original image slices are

median and wiener filtered and then subtractive and divisive

local contrast normalization is applied [19].

Figure 6 shows consecutive slices from a single time-

frame. The bridge is most apparent in slices 8 and 9 of the

30 depth slices with the highest contrast to noise ratio = 2.56

db. The figure shows the result of our proposed scheme of

filtering and slice weighted averaging where the contrast to

noise ratio rises to 8.9 db.

Figure 7 shows the 2D representation using 4 different

methods: mean pooling, max pooling, weighted average

with equal contribution and Gaussian contribution. The

mean pooling does a very poor job. The bridges are mostly

invisible. Bridges 3 and 4 are barely visible with max pool-

ing. They are apparent with the equal contribution weights

but then bridges 6 and 7 are sort of cutoff due to nearby

ROIs in different slices. The Gaussian contribution weights

does a fair job at maximizing the visibility of the bridges

and avoiding cutoffs through a smooth blending between

close regions. Although different regions seem to have dif-

ferent lighting conditions due to taking weights from differ-

ent sets of slices, it is not an issue since we are only inter-

ested in having a clear view around the ROI. Note that the

description of the conversion from a 3D to a 2D represen-

tation of the timeframe so far assumed that no two cells at

different depths overlap with each other. This is indeed the

case in our dataset with a total depth stack of around 28-

30 microns. However, 3D timeframes with overlapped cells

may occur in other data sets, for example ones with stacks

of larger depths. This case can be handled by converting a

3D timeframe to two or more 2D images, such that each 2D

image represents a subset of the timeframe slices where no

cells overlap with each other.

4.3. Tracking ROI

The cells, nuclei, and bridges are not static across time

but rather move around. Their motion is expressed through

displacement between the timeframes. That displacement

need not be in a specific direction. With the 2 minute in-

terval between frames, the only observation is that each ob-

ject remains the closest to its previous location. So it is
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Figure 7. Samples of 2D representation of 3D timeframe images.

The arrows point to bridge formation locations. Each row is a

different timeframe. The columns represent the 2D pooling as:

(a) mean intensity pooling (b) max intensity pooling (c) weighted

average with equal contribution strategy (d) weighted average with

Gaussian contribution strategy.

more like a restricted random walk where the restriction is

in the sense of how far an object can be displaced between

consecutive timeframes. We use this observation to track

the objects (i.e. ROIs) across time. The objects to track

are identified by the centroids of the blobs formed from the

summary mask image. Working sequentially across time,

for each object J in frame Ft the closest object J ′ in frame

Ft+1 is found. This can be done simply by multiplying the

summary mask of frame Ft+1 with a Gaussian matrix cen-

tered at location J . The size of the Gaussian corresponds

to the restriction allowed in the displacement between time-

frames. J ′ then corresponds to the location of maximum

resulting value. The pairs (J, J ′) are processed in ascend-

ing order by distance. For each pair (J, J ′), object J in Ft

is mapped to J ′ in Ft+1 if no other object in Ft was already

mapped to J ′. Otherwise, object J is assumed to cease to

exist in frame Ft+1.

4.4. Classifying ROI

A convolutional neural network is used for classification.

Since we are only interested in bridge patterns, the classes

are bridge and nucleus (or other). The network consists of

2 convolutional layers that use same padding, a fully con-

nected layer, and a softmax layer. Each convolutional layer

is followed by a rectified linear unit and maximum pool-

ing. The architecture is shown in Figure 8. The input is

60 × 60 patches taken from the 2D representation around

pixels with value 1 in the binary summary mask. Using the

training dataset described in Section 3 we have far fewer

bridges than non-bridge parts. We deal with this class im-

balance by using a weighted loss function where the class

weights are inversely proportional with the amount of train-

ing data available from that class. Also it is important to

note that while it is usually advised to use batch normaliza-

tion in convolutional neural network it does not work well

Figure 8. Architecture of the classification convolutional neural

network.

in this case; the class imbalance makes the learnt normal-

ization parameters misrepresentative of the data. The train-

ing data is composed of about 40 bridge and 80 non-bridge

ROIs. For each ROI, 10 random samples in the ROI are

used and augmented with flipping and rotation. The net-

work configuration has a learning rate of 0.0005, a batch

size of 160 and uses an Adam Optimizer. It seems to con-

verge well after around 75 epochs.

4.5. Tracking and Classification Combined

The result from the classification is combined with the

tracking to identify the bridge formations over a time se-

quence. If an object is classified as a bridge through some

but not all of its instances over time we can still find all of its

occurrences by combining the results from the classification

and tracking.

Let Nbridge(J, Fi): the number of patches belonging to

object J ′s ROI in frame Fi that are classified as a bridge,

Ntotal(J, Fi): the total number of patches from object J ′s

ROI in frame Fi that are fed to the convolutional neural

network for classification, and Pbridge(J, Fi): the proba-

bility of an object J to be a bridge in frame Fi. Then

Pbridge(J, Fi) =
Nbridge(J,Fi)
Ntotal(J,Fi)

. For an object J in capture

C to be classified as a bridge, its instances throughout the

capture (as identified by the tracking) need to satisfy a few

conditions related to the minimum number of instances with

some probability of being a bridge, and its maximum and

mean probability throughout the capture. These conditions

are summarized as follows:

|∀Fi∈capturePbridge(J, Fi) > 0| ≥ 2

max
∀Fi∈C s.t. J∈Fi

Pbridge(J, Fi) > p1

mean
∀Fi∈C s.t. J∈Fi

Pbridge(J, Fi) > p2

where p1, p2 are determined experimentally as 0.75, and

maximum(0.25, 0.8
|instances| ) respectively. Together these

conditions ensure that the object has a high probability of

being a bridge in at least one timeframe and is reasonably

classified as a bridge throughout its lifetime. Figure 9 shows

sample results from the test data.
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Figure 9. Sample results from the classification and tracking in 3 different captures. 5 consecutive timeframes are shown from each

capture. The top and bottom rows in each are the classification and tracking overlaid over maximum pooling and Gaussian weighted

pooling respectively. Boxes coloring: green = true positive, red = false positive, and blue = false negative.

5. Experimental Results

The dataset we use is described in Section 3. We have

2 sets of captures. Each set is taken over a single zebrafish

embryo sample. We can either take all the combined data

we have, shuffle and divide into training and test, or we

can use one set for training and the other for testing. We

choose the second option so that the test set is completely

new and we can evaluate how well the system generalizes.

The training set consists of 5 captures of 78 timeframes and

11 bridges in total, and the test set consists of 5 captures

of 44 timeframes and 38 bridges in total. The number of

bridges is such that a bridge is counted once throughout its

lifetime in a single capture.

We run the pipeline as detailed in the previous section

on the test set. The results are quantified on 2 levels; the

instance level and the bridge level. In the instance level,

a true positive is a bridge identified correctly in a single

timeframe. In the bridge level, a true positive is a bridge

that is identified correctly over the entire course of a cap-

ture. Figure 9 shows samples from the results obtained

using our proposed method over different captures. The

captures are from different stages of the cells population

growth. It shows how accurate it performs in different
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population sizes. Capture A represents an early stage of

the population. In this stage the bridges are large and far

apart. They are all correctly classified and tracked. In cap-

ture B the population size is larger and so the number of

cells featured in the sample imagery increases. From all

the ROIs in the capture, the one bridge that occurs in it is

correctly identified and tracked. In Capture C the popu-

lation size has further increased. There are more bridges

and are closer to one another and to neighboring nuclei.

The false positive in the first frame is actually the begin-

ning of a bridge which becomes apparent in the following

timeframes. In the last frame we see that very close bridges

are not well disambiguated. They are correctly classified

but their very close proximity results in the same identi-

fier given to them. The accuracy, type I error, and type

II error for the per-instance statistics are 98%, 0.3%, and

1.5% respectively. Furthermore, to understand the value of

combining the tracking with classification we present the

per-instance statistics when using only the classifier without

the tracker: the accuracy, type I error, and type II error are

90.1%, 2.97%, and 6% respectively. Table 1 shows the pre-

cision, recall, and F1 scores. The lower accuracy and scores

when using the classifier only signify the importance of

the combined approach in identifying the bridge instances,

making the process more robust to the various elusive pat-

terns that a bridge can take over its lifetime. It should be

noted that the difference in the numbers for the per instance

and per bridge statistics is due to the fact that the number

of instance occurrences of a bridge is not uniform. Some

bridges appear in over 10 sequential timeframes and oth-

ers appear in only 3. Both cases are counted as 1 in the

per bridge statistics and hence the difference in the statis-

tical results. Figure 10 shows samples of the patches used

in training and Figure 11 shows samples of the test results.

The false positives in test data are mostly the beginning of

a bridge prior to its clear formation; thanks to the tracking

it is identified early on. The false negatives are pretty close

to the shape of a nucleus making them hard to identify. The

set of true positives shows how well the system generalizes

where these exact formations are not present in the training

data.

Method Per-instance / Per-bridge Precision Recall F1 score

Classifier + Tracker Per-instance 0.98 0.91 0.94

Classifier + Tracker Per-bridge 0.97 0.85 0.91

Classifier Only Per-instance 0.76 0.61 0.68

Table 1. Statistical Results.

6. Conclusion

In this paper we have proposed a method for the lo-

calization and tracking in 4D fluorescent microscopy im-

agery with depth-varying noise and lighting conditions, and

where the objects of interest are often very small and suffer

Figure 10. Sample training patches for ROI locations representing

bridge formations and parts of nuclei.

Figure 11. Sample test patches

from very low contrast-to-noise ratio. We have shown the

efficiency of our proposal with the localization, classifica-

tion, and tracking of microtubule fibers bridge formations

in zebrafish embryos achieving 98% accuracy. The sug-

gested approach optimizes for both efficiency and complex-

ity without the need for high processing power or memory.

We expect our method can be successfully applied to other

fluorescence microscopy imagery datasets with the tweak-

ing of few parameters, mainly the thresholding parameters

in the ROI extraction step.
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