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Abstract

3D image stacks are routinely acquired to capture data
that lie on undulating 3D manifolds yet processed in 2D
by biologists. Algorithms to reconstruct the specimen mor-
phology into a 2D representation from the 3D image vol-
ume are employed in such scenarios. In this paper, we
present FastSME, which offers several improvements on the
baseline SME algorithm which enables accurate 2D repre-
sentation of data on a manifold from 3D volumes, how-
ever is computationally expensive. The improvements are
achieved in terms of processing speed (3X-10X speed-up
depending on image size), minimizing sensitivity to ini-
tialization, and also increases local smoothness of the re-
covered manifold resulting in better reconstructed 2D com-
posite image. We compare the proposed FastSME against
the baseline SME as well as other accessible state-of-the-
art tools on synthetic and real microscopy data. Our eval-
uation on multiple metrics demonstrates the efficiency of
the presented method in maintaining fidelity of manifold
shape and hence specimen morphology.

1. Introduction

Microscopy images have become one of the primary
ways to explore, analyze and quantify various biologi-
cal phenomena. The rapid progress of automated mi-
croscopy technology in the last decade enables the acqui-
sition of biological samples as images with varying scale
and resolutions. Low-resolution high through-put images
are used in pharmacology and basic biology to generate
and prioritize hypotheses which is further investigated
and validated via high resolution widefield and confocal
microscopy images in labs. Biological specimens, having
thickness and surface profiles considerably larger than

the focus range of microscope lenses, are frequently im-
aged as 3D volumes. Optical sectioning of the specimen
captures the in-focus information at increasing depths
simulating an extended depth of field. A 3D image stack is
thus a sequence of focused image slices, which can sub-
sequently be processed to reconstruct a single all-data-
in-view image. In bio-image analysis, 2D projection of
volume images are routinely used for dimensionality re-
duction to visualize and analyze various data [15]. The
objective for a 2D approximation of the 3D volume is to
maximize information content maintaining accuracy of
manifold shape and simultaneously minimizing the dis-
tortion of Point Spread Function (PSF) noise and imaging
artifacts.

In this paper, we use the term composite image for the
recovered 2D representation of the 3D image stack data
and index map for the Z-values on the manifold to retain
depth information. Due to limited depth of field of mi-
croscope lenses’ focus, these methods were initially con-
ceived for bright field light microscopy [1, 14]. The grow-
ing popularity of 3D confocal microscopy has generated
new demands on traditional composite image generation
algorithms. Extraction of the manifold in a 3D microscopy
image volume containing the specimen of interest begins
with acquisition of an extended depth of field image stack.
We apply an operator, for example intensity maxima, in
case of Maximum Intensity Projection (MIP) on each 2D
image slice. The plane index of maxima of intensity re-
sponse for each pixel position along z-axis is selected as
the decision map from which to create the final compos-
ite image. In the literature, several methods have been
studied for specific applications and imaging modalities
[17, 11, 5, 3]. Most of these fails when presented with
very diverse specimen morphologies as they have been
over-optimized for specific applications. On the other
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hand, methods that can address diverse imaging modali-
ties and specimen morphology, fail to create local coher-
ence of the extracted manifold. It is mainly because 3D
volume images of biological specimen present a distinct
foreground and background. The foreground is the delib-
erately labeled high intensity pixel that move in and out of
field of view on a plane. However, it is tricky to determine
when the unlabeled background is following the mani-
fold in consistence with the foreground. These regions
often present no intensity variation or texture. As a result,
in case of pixel wise projection methods, composite im-
ages are often assigned values from the maximally noisy
planes. Hence, existing methods tend to pick up the back-
ground in the index map from defocused planes in the
3D volume accumulating PSF noise and background ar-
tifacts and create a false distortion of the specimen mor-
phology. In our framework, we give strong emphasis on
spatial coherence of the manifold’s depth index to extract
a better representation of the data. These methods have
the potential to be useful in bio-image analysis from 3D
microscopy data to obtain a high-quality, meaningful and
denoised image of reduced dimensionality with relevant
adaptations.

2. Previous works

Image]J [13] and Cell Profiler [7] are the freely available
microscopic image analysis softwares that are most fre-
quently used by biologists. These tools offer several prim-
itive focus operators like Maximum/minimum intensity
projection (MIP), standard deviation in z-axis, average in-
tensity projection etc. However, there is no control on
the smoothness or shape of the recovered manifold, giv-
ing the biologists no opportunity to ensure local neigh-
borhood coherence of the reconstructed 2D composite
image, as expected in natural biological specimen. An-
other Image] Plugin, Extended Depth of Field (EDF)[1]
gives the user control over smoothness of the 3D map,
however it was conceived for grayscale images. In case of
color images, it forces the 2D approximation to take place
in parallel, independently on each of the color channels.
In biological studies, it is often the case that one chan-
nel works as a reference from which to infer the orien-
tation of the 2D manifold in 3D space and then to ap-
ply the same index map to all channels. For example, in
co-localization studies of proteins along a cell membrane
layer with cell-membrane and protein of interest imaged
in separate channels. A recent review article on Content-
Aware Image Restoration [19] highlights this problem and
the many recent algorithmic toolkits that try to address
it [8, 4, 15]. Another relevant recent method is Premosa
[4] - a multi scale analysis toolkit to quantify how cellu-
lar processes create tissue dynamics. This method works
very accurately even on very noisy data and can be very

efficient in time. However the method is not suitable to
use in widefield microscopy and tends to over smooth
the planes with high curvature as demonstrated in the
results section 4. The SME method [15] produced the
most accurate 2D projection for both confocal and wide-
field imaging modality, however the method is computa-
tionally expensive and requires many iterations to posi-
tion the background manifold in coherence with the local
foreground depths. The SME method have been already
been used for various biological studies as the 2D projec-
tion algorithm in works described in the [9, 2, 16].

In FastSME, we address the above mentioned limita-
tions of the SME method and propose modifications than
can produce faster, smoother and more accurate 2D re-
construction of the 3D image stack. FastSME is applicable
as a preprocessing step in many modalities of microscopy
imaging where data lies on a manifold in 3D volume but
requires a 2D representation for visualization and anal-
ysis. We demonstrate several applications and made a
MATLAB implementation available for similar tasks. In
this method, the focus in on the analysis of 2D manifolds
in a 3D space frequently referred to as 2.5D imaging in the
literature. However, it is critically important to determine
if a 2D projection image creates a distortion of the actual
morphology. While recovering the shape of a 2D manifold
such as the cell membrane, projection is an appropriate
operation. In contrast, a 3D cell imaged as a 3D volume,
will suffer significant distortion of morphology with any
of the dimensionality reduction methods through projec-
tion methods and hence is better analyzed in 3D. Hence,
given the impossibility of exhaustively listing all appli-
cable scenarios, ultimately, domain experts’ discretion is
advised in the use of any projection to 2D from 3D image
volume for visualizing or quantifying a biological speci-
men.

3. Contributions

The main contributions of this paper is an improved
version of the SME algorithm [15]. The improvements are
two-fold.

1. Significant reduction in computational cost:
FastSME deploys a gradient descent momentum
optimization scheme on a novel per-class cost func-
tion with a multi-scale approach making it useful to be
applied in practice to larger image data - the speedup
observed is 3X-10X relative to the size of the image.
This is enforced through the adoption of a pyramidal
scheme multi-scale optimization of the index map and
adoption of stochastic gradient descent momentum
[12] with simulated annealing of the step size for the
novel energy functional minimization.

2. Efficient propagation of foreground manifold to
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background: Secondly, the qualitative improvement
of the obtained index map (which in turn results in an
improved reconstructed composite image, although it
is at times visually imperceptible or by adopted eval-
uation metrics). Information propagation regarding
depths of foreground pixel to the background pixel lo-
cations on the index map is impeded in the iterative
optimization process with gradient decent as the en-
ergy function can get trapped in local minima within
few iterations. The improved per-class cost function
and optimization strategy implies FastSME can start
to place the background index map in close proxim-
ity to the foreground much faster in the optimization
run before the step size becomes very small allowing
significantly higher local consistency of index map to
be achieved.

The rest of the article is organized as follows: In section
4 we present our proposed algorithm with specific atten-
tion to the improvements in FastSME over SME. Section 5
introduces the evaluation metrics and synthetic data we
used in order to compare performance of FastSME and
state-of-the-art methods. We further demonstrate the
performance of FastSME on several diverse image data
set acquired by different imaging modalities and contain-
ing diverse specimen morphologies. Finally we present
the discussion of the experimental results and conclude
in section 6.

4. Proposed Method

Our primary objective is to estimate the manifold
passing through the foreground signal and propagate it
smoothly through the background regions. SME formu-
lates equation 1 in a cost minimization framework where
the overall cost is the sum of the distance from the index
map Z to the most focused z level, Z;,, and the local
variance of the index map, 0. Firstly, we need to deter-
mine if pixels belong to foreground or background based
on their z profile. This is performed using 3 class kmeans
[6] on the frequency domain representation of the z
profiles and classes are assigned based on high power,
low frequency profiles to foreground, medium-frequency
profiles to an uncertain class and high frequency profiles
to background class. The per class weighting factor C be-
tween z error term and regularization term is estimated
from the data as described in details in [15]

Z*=argmin Y [C|Zpax—Z|+ 0] @
()
4.1. Normalized cost function

In the FastSME method, the cost function is designed
to find the optimal index map Z (used to reconstruct a
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Figure 1. Figure demonstrates the improvement in optimization
of cost function (B) achieved by FastSME (dark green) compared
to SME (light green) on ’'SYNTHETIC TISSUE’ dataset (A).

Algorithm 1 FastSME

Input:
3D Image stack I with dimension W x H x D

: Compute the maximum focus map Z; 4.

: Compute the power frequency profile P.

: Perform 3 class k-means of power frequency profiles P.

: Construct class map C and Z;;, 4y distributions per class.

. Initialize t = 1,20 = Zmax, To = D/100,e = W x H x D x
1074, A =0.5and AT = 0.99

QB W N

6: while do|E(Z') —-E@Z! )| >¢

7: forall (x,y) e W x Hdo

8: 2 =z7'+u

9: U=-TVZ*(ZH+ Mzt -z

10: A mgij?zlzi*/ni;iis the class number
11: Zi* =Z(x,~,yi)[ci|Zmax—Z|+Uz]

12: TH — T AT

13: t—1t+1

14: Return projected image I(x, y, Zt+1 x,y)

2D composite image from the 3D stack), that minimizes
the distance to the maximum focus map Z,,,x (ensuring
its foreground proximity) and local variance of Z (ensur-
ing its smoothness in 3 x 3 neighborhood). The proposed
modification to the cost function is not to normalize the
cumulative contribution of all the three classes derived
from k-means of the frequency domain representation
of the z profiles (background, uncertain and foreground
class) by the total number of pixels. This tends to unde-
servedly prioritize is it the smoothness in case of back-
ground class and the depth levels in case of foreground
class (which ever is the largest by pixel number class in
the classmap referring Figure 2 B) in the final derived in-
dex map. In FastSME, we normalize the cost contribu-
tion of each class by their respective cardinality [equation
2], thus modifying the overall cost to the sum of normal-
ized cost per class [equation 3]. This modification en-
ables the recovered index map to be less sensitive to its
initialization. Currently the index map is still initialized
from Maximum Intensity Projection (MIP) similar to SME
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Figure 2. Figure demonstrates the improvement in quality of re-
covered index map in terms of local coherence while preserv-
ing the original biological structure (which in this case is apical
layer tissue surface) achieved by FastSME (C) compared to base-
line SME (D) on ’EPENDYMAL CELL dataset (A) using classmap
in B. The scalebar indicates the stack depth of the 3D volume -
1 (dark blue) indicates the top of the stack and 58 (yellow) indi-
cates the bottom stack.

but in practice can be initialized randomly. Here Z* is
the final index map which is derived from the optimiza-
tion scheme by minimizing the summation of cost Z;" per
class denoted by class identity i (including foreground cy,
uncertain ¢, and background class cp). n; is the number
of pixels belonging to class i. 0 is the regularization term
and C is the respective class weight as described more in
details in [15]

ZF= )Y (CilZmax—Z|+ 0] )
(xivyi)
3
Z*=argmin)_ Z'In; 3)

i=1
4.2. Gradient descent with momentum optimization

In FastSME, the optimization scheme employed is
aAYstochastic gradient descent with momentumaAZ [12].
Gradient descent scheme in general updates weights and
biases to minimize the loss function by taking steps in the
direction of the negative gradient of the loss.

Z™M () = 2%, y) - TV Z* (2 (x, y) (4)

where ¢ stands for the iteration number, T; > 0 is the
step size, Z'(x, y) is the individual Z position of the index
map at ¢ th iteration, and VZ*(Z'(x, y)) is the gradient of

loss function at Z*(x, ).

For the ’stochastic gradient descent with momentum’
scheme the momentum term is added to regularize the
index map adjustment process [Equation 5]. Addition
of the momentum term to the index map optimization
scheme steadies the rate of cost drop and makes a faster
descent towards the global minima. It also helps to avoid
getting stuck in saddle points in the solution space.

U=-T,NZ*Z'x, )+ MZ (x) - 27 x,y)  (5)

ZM ) =2+ U (6)

A is the momentum weight that defines the contribu-
tion of the previous gradient step to the current step. U
is the final update factor to the index map Z'(x,y). The
step size is initialized to T; = D/100, where D is the num-
ber of planes in the image stack. Multiplying it by AT at
each iteration, produces a geometric decay scheme that
ensures faster convergence and reduces possibility of os-
cillation during optimization. Empirically, in all datasets
AT = 0.99 and momentum weight A = 0.5 gave satisfac-
tory results. Momentum weight of 0.5 implies that the
update factor U contains the same contribution from the
current gradient and the current velocity. Other available
state-of-the-art optimizers such as adam [10], adadelta
[20], rmsprop [18] when tested, produced almost simi-
lar result with varying number of iterations. ’stochastic
gradient descent with momentum’ produced consistently
lower cost with fewer iterations on different initializations
for the index map for the 'SYNTHETIC TISSUE’ dataset
and hence we choose this optimizer. The stopping cri-
teria is being set as VZ* < W x H x D x 107° instead of
VZ* < W x Hx D x 1075 where W, H, D are the width,
height and depth of the input 3D stack respectively. This
relaxation of the stopping criteria reduces required num-
ber of iterations. In gradient descent optimization in the
pilot SME, the later iterations affected only floating point
adjustments on the index map that does not impact the
quality of the composite image significantly because it is
only possible to use integer values when generating the
composite image from the index map as we do not inter-
polate intensity values between 2 consecutive Z planes.

Figure 1 illustrates the iterative optimization process
of SME and FastSME runs of the 'SYNTHETIC TISSUE’
dataset (in plot A). In FastSME, the cost reached 0.9708
(in log scale) with 260 iterations much faster than the cost
minima reached by SME which is 1 (in log scale) with 439
iterations. In SME optimization as illustrated in Figure 1
B in light green, the cost function has a rapid decrease
in the initial iterations because it smooths the index map
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Figure 3. FastSME achieve on average 7X speed gain on SME. On
various biological datasets the obtained gain is in range of 3X
to 10X. The speed gain is directly proportional to total number
of pixels on the index map. Datasets are ordered in sequence of
increasing 2D image sizes.

from initial maximum focus map which is locally incoher-
ent. In later parts of the run, the step size gets smaller,
therefore it takes many more iterations to propagate the
foreground manifold to the background manifold hence
minimizing the cost VZ* slowly. In FastSME as shown
in dark green in Figure 1B, the foreground local consis-
tency adjustment and foreground to background mani-
fold propagation happens simultaneously resulting in a
steeper drop in VZ*. Additionally, as a consequence of si-
multaneous corrections of index map for both foreground
and background, the cost minima VZ* reachable is even
lower than that of SME with significantly fewer iterations.

4.3. Multi-scale pyramidal index map optimization

For very large images, it is more efficient to learn to es-
timate the index map in lower resolution at early stages
of the optimization and use the partially optimized man-
ifold to initialize for the full resolution optimization. As
the low resolution optimization result is already close to
the final desired local minima, it takes fewer iterations
to converge on the full resolution index map. By lower-
ing the resolution by 0.5, we could reduce the number of
pixel locations to optimize by 1/4 th. We implemented the
pyramid scheme as a power of 2° implying if the image is
more than of size 512X512, it will have 2 stage iteration
process where first stage would be 50% of the full resolu-
tion. For images of size more than 1024X1024 it would
have 3 stage of sequential 25%, 50% and 100% resolution
optimization and so forth. Working initially at lower res-
olution helps getting a smoother manifold as it initially
reconstructs a flatter manifold and later corrects the lo-
cal variations. Additionally, in lower resolution the local
smoothing window effectively becomes bigger compared

to when performed on full resolution and thereby helps
propagate the foreground manifold information faster to
the reachable background pixels. Figure 2 presents a vi-
sual illustrations of the differences in index map created
by FastSME and SME on 'EPENDYMAL CELLS’ dataset
(2 A) using the class map in Figure 2 B. In Figure 2 C,
we can see that the FastSME index map on the left ap-
pears smoother and more similar to the actual biological
structure of the 'EPENDYMAL CELL apical tissue layer.
Whereas in SME index map on the right (Figure 2 D), there
are some examples of bright yellow points within blue ar-
eas representing some artifacts extracted from depth of
the cell rather than being on the apical layer. This mul-
tiscale pyramid index map optimization strategy signif-
icantly reduces the number of computation in each it-
eration during optimization and provides robust perfor-
mance across a large variety of biological structures as
shown in the result section 6.

In the pilot SME framework, the class map was created
using kmeans on the frequency domain representation of
z-profile of each pixel. Performing kmeans clustering on
very large dataset can consume huge amount of resources
in terms of memory and time, which is now parallelized in
FastSME. Parallelized kmeans clustering for smaller im-
ages does not make much difference in terms of speed but
for large dataset it is significant.

In figure 3, the computations time of SME and FastSME
has been tested on 10 dataset and presented ordered by
the increasing number of pixels of the index map Width
x Height. The computation time recorded is the total exe-
cution time of SME and FastSME. Execution time includes
and can be dependent on loading time of the data, finding
multichannel projections using the reference index map
of the selected channel, the quality of the initialization
based on MIP. But the majority of the computation time
is the taken by the iterative energy optimization scheme.
As illustrated in figure 3, we achieved an average speed
gain of 7X in FastSME compared to that of SME. The gain
in speed with FastSME is higher in larger dataset keeping
the quality of the composite image and index map intact
as described in the following results section.

5. Results and Evaluation
5.1. Dataset

In this work, we primarily test all the dataset reported
in the SME paper [15]. We did not use the ‘EPENDYMAL
CELL-TILE SCAN’ image due to it being a larger mosaic of
the reported ‘EPENDYMAL CELLS’ dataset, rather intro-
duced a new dataset of golgi bodies acquired in confocal
imaging ‘GOLGI’. The quantitative comparison was per-
formed on the ‘SYNTHETIC TISSUE’ data. The method
for creating this particular dataset is described in [15].
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Figure 4. Visualization of recovered composite image and index map on synthetic data. The 2nd and 4th rows are the zoomed view of
yellow square in 1st and 3rd rows to demonstrate clearly the performance the various methods. Both EDF and Premosa fail to recover
parts of the synthetic data and the reason for that is the erroneous index maps they create. EDF recovers neighboring foreground
and background pixels from different depths of the image stack. (compare BQ) and Premosa creates a over-smoothed index map not
following the data (compare BR). FastSME can follow the actual manifold more accurately (compare BT) and hence recovers the most

authentic composite image from 3D stacks.

5.2. Evaluation metrics

We evaluate the performance of our proposed method
with multiple metrics scoring the quality of the recon-
structed composite image w.r.t. the reference image data
—normalized mutual information and signal-to-noise ra-
tio; the fidelity of the recovered index map with root mean
square error w.r.t. the reference index map used to create
the synthetic data; and finally on the time taken by each
of the methods.

¢ Firstly we compare the normalized mutual informa-
tion (nMI) content of the recovered composite image
Ix to study the co-relation with the reference ground
truth image Iy, before corrupting the data with PSF and
noise, mimicking a real microscopy image.

px, IR)
MI = Ix,IR)l _), 7
n ;;pu:mOmm&mmy @

where p(Ix) and p(Ig) are the marginal probability
density functions of the recovered composite image Ix
and reference image Iy respectively. The physical sig-
nificance of this metric is it enables to evaluate how
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much of the original information content of the refer-
ence 2D image is retained in the recovered composite
image from the 3D volume.

The second metric we use is the Signal to Noise Ratio
(SNR) in decibel scale -

o*(Ip)

SNR =20log | ———
8|52 - Ix)

8

where SNR, is the ratio of variance of the reconstructed
composite image I and the variance of the noise which
is the difference between the reconstructed composite
image Ir and the ground truth image Ix. The metric
gives an indication of how much of the distortions due
to PSF and sensor noise is covered from the image vol-
ume.

To estimate the precision of the reconstructed index
map Zg, it is compared in terms of root mean squared
error (RSME) with the synthetic index map Zx (which
is used to generate the ’SYNTHETIC TISSUE’ dataset).
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Figure 5. Performance evaluation on synthetic data with multi-
ple metrics. Premosa [4], SME [15] and FastSME are comparable
on SNR(A) and NMI(B), and infact speed wise FastSME is slower
than Premosa (D). However, FastSME outperforms all methods
on the accuracy of recovered manifold (C-RMSE- index map)
which has important implications for the quality of composite
image as shown in Fig. 4.

RSME :\/Zx,y (Zx(x,y) = Zr(x, y))*

W x H ®)

where W and H are the width and height of the image
respectively.

* Finally, the speed is compared among all these methods
based on time required for execution keeping all the pa-
rameter fixed to the default values.

The performance of EDE Premosa, the pilot SME
methods and our proposed method FastSME w.r.t. the
metrics SNR, nMI, RMSE and speed are presented in Fig.
5. We chose these algorithms due to their easy accessibil-
ity in the microscopy image analysis community as Im-
age]J plugins that make them popular with bioimage ana-
lysts. We also compared the results of FastSME with max-
imum intensity projection (MIP) which is the most com-
monly (90% of the time) used tool by biologists, as re-
ported in a survey in [15]. SME and FastSME performed
slightly better than Premosa w.r.t. metrics SNR and nMI 4
B,A indicating the better quality of the composite image.
When evaluated on the accuracy of the index map recov-
ery in terms of RSME w.r.t. the ground truth index map,
as illustrated in Fig 5 C, FastSME generates the most pre-
cise index map with the lowest error among all. Premosa,
which is the fastest among all the reported methods, also
performed very well in terms of RSME of index map how-
ever missed some high curvature points as shown in Fig-
ure 4 C and H.

5.3. Results on diverse microscopy data

The algorithm is applied on multiple diverse datasets
from different microscopy modalities 6 A-T. For details
regarding the preparation of the datasets the interested
reader is referred to the pilot SME paper [15]. A, B illus-
trating all-in-focus reconstruction of neuronal branches
with FastSME compared to MIP on 'NEURONI. C,
D represents MIP and SME projections on ‘TUBULIN’
widefield image where MIP failed to reconstruct the de-
tailed actin network whereas FastSME successfully de-
picted them. E, F represents MIP and SME projections
on 'MEMBRANEL’ confocal image showing contrast en-
hanced denoised projection by FastSME. G, H represents
MIP and SME projections on ‘NEURON2’ confocal im-
age showing lower background noise accumulation by
FastSME. 1, J represents MIP and SME projections on
‘GOLGI’ confocal image illustrating cleaner projection by
FastSME. K, L represents MIP and SME projections on
‘SYNTHETIC TISSUE’ confocal image illustrating higher
denoising by FastSME. M, N represents composite images
from 2-channel ‘DENDRITE’ dataset with dendrites (red
channel) as reference for index map, illustrating the co-
localized buttons around the dendrites and lower back-
ground noise with FastSME than with MIP. O, P repre-
sents MIP and SME projections on ‘NUCLEI’ 3 channel
confocal image with membrane in red as reference, show-
ing that FastSME could locally reconstruct cleaner and
across channel coherent projection with apical layer than
by MIP. Q, R represents MIP and SME projections on 3
channel ‘CANCER CELLS’ confocal image with nucleus in
blue as reference, showing accurate localized membrane
projection around nucleus center along z by FastSME.
S, T represents MIP and SME projections on 3 chan-
nel ‘EPENDYMAL CELL confocal image with membrane
in blue as reference, illustrating that FastSME projection
could reconstruct localized projection of centrioles and
pro-centrioles with apical layer without accumulating un-
wanted blood vessels from the depth of the volume.

Overall, FastSME is able to generate very precise index
map and well contrasted locally coherent accurate com-
posite images with relatively high speed. Premosa is very
consistent even in very noisy image in terms of accuracy
and higher speed, however is limited to confocal imaging
only, whereas SME and FastSME can work with both
confocal and widefield images. FastSME can be used for
multi channel projection applying the index map from
user defined reference channel to acquire data along the
manifold of interest from other channels. In this way,
we can extract 2d projection of a 3D stack maintaining
within and between channel local spatial consistency
w.r.t the index map reconstructing closer approximation
of the real 3D manifold of the biological object of interest.
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Figure 6. Comparison among composite images created by MIP and FastSME method on varied single (in grayscale) or multichannel
datasets acquired by widefield (NEURON1 and TUBULIN) and confocal (rest except SYNTHETIC TISSUE) microscopes. Scale bar is 5
micron. In all the cases presented here, FastSME generates denoised, contrast enhanced, and spatially coherent representation of the
morphology of the biological specimen when compared with MIP (most commonly used pixel wise projection method).

FastSME is currently implemented on MATLAB and
all reported results are obtained on MATLAB 2017b on
Intel core i7-7700 HQ CPU 2.81GHz 32GB ram ZBook
laptop. The codes are made publicly available at
https://github.com/Shihav/FastSME and all the dataset
used for this work is being made publicly available at
https://data.mendeley.com/datasets/bn7zbzc3gg/1. In
the near future, we plan to make available a Fiji plugin
for FastSME following the suggestion of the community
for easier accessibility and adoption of the method to in-
crease the potential impact of FastSME. We will include
features to make it easier for FastSME users to — 1) au-
tomatically update via Image]/Fiji update mechanism 2)
deploy command-line version of the library for use in
high-throughput and multi-threading (several instances
of FastSME running in parallel) in cluster environments.

6. Conclusion

In this paper, we propose FastSME, an improved ver-
sion of the SME method that allows faster and more acu-
rate 2D representation of data lying on a smooth mani-
fold in a 3D volume generated by common microscopy

modalities. The improvements are achieved mainly
through adoption of a better adapted cost function design
and sophisticated optimization strategy with stochastic
gradient descend momentum optimization embedded in
a simulated annealing schema coupled with a multi-scale
pyramidal index map optimization. We reported on aver-
age 7X gain in speed compared to baseline SME and im-
proved index map and composite image precision com-
pared to state-of-the-art methods in terms of multiple
metrics. FastSME can be reliably used as 2D projection
method of specimen morphology lying on a smooth 2.5D
manifold in 3D space. This has wide ranging applications
in bioimage analysis as demonstrated by the many real
data examples presented in the paper, for example, in co-
localization study across multiple channels.
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