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Abstract

Computerized approaches for automated classification

of histopathology images can help in reducing the manual

observational workload of pathologists. In recent years,

like in other areas, deep networks have also attracted at-

tention for histopathology image analysis. However, exist-

ing approaches have paid little attention in exploring multi-

layer features for improving the classification. We believe

that considering multi-layered features is important as dif-

ferent regions in the images, which are in turn at different

magnifications may contain useful discriminative informa-

tion at different levels of hierarchy. Considering the depen-

dency exists among the layers in deep learning, we propose

sequential framework which utilizes multi-layered deep fea-

tures that are extracted from fine-tuned DenseNet. A de-

cision is made by layer for a sample only if it passes a

pre-defined cut-off confidence for that layer otherwise, the

sample is passed on to next layers. Various experiments on

publicly available BreaKHis dataset, demonstrate the pro-

posed framework yields better performance, in most cases,

than typically used highest layer features. We also com-

pare results with the framework where each layer is treated

independently. This indicates that low-mid-level features

also carry useful discriminative information, when explic-

itly considered. We also demonstrate an improved perfor-

mance over various state-of-the-art methods.

1. Introduction

Breast cancer (BC) is one of the most prevalent types of

cancer in women and it is also one with the highest mortality

of all cancer deaths amongst women worldwide [1] [2]. His-

torically, there has been a rising trend in breast cancer cases

globally in the last half century with the incidence espe-

cially increasing in recent years. Delay in diagnosis is one

of the major reason for high level of mortality in breast can-

cer cases. Hence, early detection and correct assessment of

breast density, which seems to have correlation with breast

cancer development, are of utmost importance in providing

better screening, and effective and efficient treatment to in-

crease survival rates.

The manual classification of breast cancer histopatho-

logical images is fatigue, expensive and time-consuming.

Hence, there is a pressing need of computer-aided diagno-

sis (CADx) systems to relieve the pathologist’s workload so

that attention can be focused on the most suspicious cases.

The CADx systems also help in overcoming the subjectivity

in interpretation to achieve more reliability of the obtained

results. Being a second opinion system, the CADx systems

reduce the workload of specialists, contributing to both di-

agnosis efficiency and cost reduction.

Recently, deep learning based solutions yield state-of

the-art performance for various applications which include

object detection, face and speech recognition, action recog-

nition, semantic segmentation, medical imaging etc. How-

ever, there are limitations in adopting deep learning in the

medical imaging due to lack of publicly sufficient labeled

database. Hence, it makes difficult to train the model from

scratch due to over-fitting problems. To overcome the such

limitation, many transfer learning-based methods [3] have

been proposed in various medical imaging applications. At

present, recent works have indicated that the existing deep

learning models pre-trained on large data can be transferred

to other recognition tasks [4] [5] [6].

The good performance of deep learning (DL) based

framework can be attributed to its ability to learn hierarchi-

cal level abstraction of input data by encoding input data on

different layers. However, considering the relatively recent

applications of DL in the medical analysis domains, exist-

ing research has not extensively explored the benefits of ex-

plicitly considering deep multilayer features to improve the

classification performance. Traditionally, such applications

only utilize the final layer features for classification.

We believe that more detailed evaluation should be un-

dertaken as different regions in the images may contain use-

ful discriminative information at different levels of hierar-

chy. Thus, information in different layers can potentially

be used to improve the discrimination capability in a clas-

sification task. Histopathological images possess much het-

erogeneity in appearance (see Figure 1). In this context, we

consider that such variability (in terms of color and texture

variation) can be better captured by considering the repre-

sentative information from different layers.

Also, a physical indication which supports such a hy-

pothesis is that the variations in histopathology images

are often captured at different optical magnification levels,

where each magnification can represent different informa-

tion. The lowest magnification captures the larger region

of interest (ROI), while other magnifications captures the

zoomed-in view of tissue inside the initial ROI. While, ex-

plicitly using different magnifications can also potentially

yield varying discriminative information for the classifica-
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Figure 1. Heterogeneity in histopathological samples(first row: benign tumor, second row: malignant tumor) from BreakHis dataset at

magnification factor of 40X.

tion task, as it also suggests such representation at differ-

ent scales which can also be captured via multi-layered

features. Thus, we believe that, such variations in color-

texture can be better captured by hierarchy of features that

are learnt at different stages of deep learning.

In light of the above discussion, in this work, we have

utilized pre-trained CNN (DenseNet after transfer learning)

for feature extraction and, pay more attention to exploit the

multi-level information, where the representation strength

of features from each layer can possibly be different across

images. Thus, the hypothesis considers that the low- mid-

and high-level information extracted from different layers

can all be helpful to improve the discrimination of feature

representation, rather than considering only high-level fea-

tures as is done traditionally.

However, there can be various possible ways to utilize

such multi-layerd features. Motivating by the fact that each

layer in deep learning is build on top of previous layers,

we propose a sequential framework which considers both

dependency among layers and their ability to capture het-

erogeneity in appearance. The proposed framework works

in such a way that, in a multi-stage setting, the labels for

samples which have a very high classification confidence at

a particular stage, will be decided at that stage. Otherwise,

the sample will pass on to the next stage. At every step of

sequential framework, different features with different cut-

off values for the classification confidence are used.

Hence, it is interesting to note that using multi-layered

features in proposed framework can prove to be better that

just using the high-level features, as is done traditionally,

which provides an indication that such deep multilayer fea-

tures may provide useful information for classification.

Note that models such as RNN and LSTM are also used

for sequential processing. However, their architecture is

quite different and are used to learn the temporal structure

from data containing temporal dependencies (e.g. videos).

In this work, there is no temporal dependency in the data

(histopathology images), and our premise is to consider the

difference in low-mid-high level features due to their se-

quential dependency in CNN.

The idea of features at multi-level features is also used

for localization / segmentation application in the U-net [7].

While the overall task and the classification framework is

quite different than that proposed in this work, it still high-

lights the usefulness of considering mulit-level features.

The main contributions are listed as follows: (1) A

framework which uses the multi-layered deep features in

a sequential manner for classification of breast cancer

histopathology images. (2) This model utilizes the low,

mid and high level features obtained by transfer learning, in

conjunction with XGBoost classifier. (3) We compare with

some competitive frameworks, as well as various state-of-

the-art approaches, and clearly demonstrate a positive com-

parative performance for the proposed method.

2. Related work

In this section, we discuss some previous works, includ-

ing state-of-the-art methods, aiming to automate the diag-

nostic procedure in context of breast cancer histopathology.

We also discuss various works that have been carried out

in the context of transferability of knowledge embedded in

the pre-trained deep models (CNNs). Hence, convolutional

neural network based frameworks have successfully been

applied to analyzing various visual imagery.

Zhang et al. [9] utilized multiple image descriptors along

with random subspace ensembles and proposed two-stage

cascade framework with a rejection option. In another

work [10], an ensembles of one-class classifiers were as-

sessed by the same authors using same dataset. Bahlmann

et al. [11], color transformed the RGB patch into two chan-

nels, called H and E that intensify the hematoxylin (eosin)

at the same time suppressing eosin (hematoxylin) stain. The

feature vectors of dimension 22 are extracted and classified

using linear classifier to diagnose relevant or irrelevant re-

gions. In [12], approach same as [11], was applied for

segmentation and classification. Linder et al. [13] extracted
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Figure 2. DenseNet-169 architecture [8]

the local binary pattern combined with a contrast measure

(LBP/C) and performance evaluated using support vector

machine (SVM). However, we note that these methods use

an independent dataset (not public). In [14], various experi-

ments that involved the state-of-art texture descriptors such

as Local Binary Pattern (LBP), Completed LBP (CLBP),

Threshold Adjancey Statistics (PFTAS), Grey-Level Co-

occurence Matrix (GLM) etc. and four classifiers are per-

formed and were evaluated at patient level.

In [15], pre-trained Alexnet [16] used for extracting fea-

tures and classification. Han et al. [17] proposed a multi-

classification model to identify subordinate classes of breast

cancer (eight classes) using deep learning. They proposed

an efficient distance constraint of feature space to formu-

late the feature space similarities by leveraging intra-class

and inter-class labels of breast cancer as prior knowledge in

deep learning framework. Song et al. [18] presented a clas-

sification model by combining convolution neural network

with supervised intra-embedding of Fisher vectors. Song et

al. [19] computed image features by FV encoding of CNN-

based local features based on the VGG-VD model that is

pretrained on ImageNet. In additional, they designed a new

adaptation layer to further transform the FV descriptors for

higher discriminative space. They perform classification us-

ing linear SVM. Color-texture features followed by various

contemporaneity classifier are used by [20].

3. Proposed approach

3.1. Feature learning

Here, we discuss the architecture chosen for proposed

study, the feature learning which involves feature extrac-

tion, and their dimensionality reduction and classification

using XGboost.

3.1.1 DenseNet architecture [8]

DenseNet is a network architecture, where within each

dense block, layers are directly connected in a feed-forward

fashion. The layer is designed in such a way, so that the

activation maps of all preceding layers are considered as

separate inputs whereas its own activation maps are passed

on as inputs to all subsequent layers. DenseNet is mainly

composed of a convolution layer, a Dense block, a transi-

tion layer, and a classifier after the global average pooling

at the input end. In proposed study we utilize DenseNet-169

which consists four dense blocks, and total 169 layers (165-

conv+3-transition+1-classification). Figure 2 shows the ar-

chitecture of DenseNet-169.

We perform transfer learning of pre-trained DenseNet

for breast histopathology image classification. We freeze

starting 30 layers as they learn generic features, which are

common for most of the applications, and retrain remain-

ing layers according to specific application. To fine-tune

the DenseNet, we resize the image depending on the in-

put size of the DenseNet. As a common practice, the fully

connected layer of the pre-trained network is replaced with

a new fully connected layer that has, as many neurons as

in the final layer. Here, we add one fully connected layer

which subsequently reduces the feature dimension of last

fully connected layer (1664-1000-2). During retraining of

DenseNet, we add one dropout layer of 0.4 between aver-

age pooling and dense layer. Dropout is a regularization

technique in which filters are randomly turned off during

training which is especially important to avoid, in the case

of low training data.

To extract features, we chose all convolution layers of

DenseNet. These convolution layers are corresponded to

filter size 1*1 and 3*3.

3.1.2 Classification with layer-wise features

The features from different convolutional layers are of very

high dimension. Hence, commonly, before using these in

other classification frameworks [21] [22], principal compo-

nent analysis (PCA) is used for dimensionality reduction. In

the proposed study, we use XGboost [23] due to its various

advantages for dimensional reduction and classification.

XGboost [23]: XGBoost is short for Extreme Gradient

Boosting. It is very popular due to its high efficiency and

performance. It is an additive tree classification model

where each new tree is added to compliment the already

built Trees. The final decision is the weighted sum of all

predictions made by each individual trees. It is a scalable

implementation of gradient boosting machines. It use a reg-

ularized model formalization to control over-fitting, which

gives it better performance. It also provides score corre-

sponding to each feature, thus enabling the reduction in

the feature dimensionality. In the proposed study, we used
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Figure 3. XGboost architecture

score to chose top performing features (<3000). Detailed

architecture of XGboost is given in Figure 3. In Xgboost,

new trees are added in such a manner that it complement the

already-built ones ( reduce the residual). Hence reduces the

bias and possibly variance compared to base learners. De-

fault values of parameters are used (max depth:2, number

of trees: 250) while performing experiment.

3.2. Sequential framework:

This subsection discusses the sequential framework in

detail. The pictorial representation of framework is shown

in Figure 4. The flow of procedure is described below:

• The classifier at each layer is trained on features

extracted from that individual convolution layer of

DenseNet.

• For each section, we use a some cut-off for the classi-

fication confidence (probability) to decide whether the

sample will pass through the next layer or not.

• As the XGboost provides probabilities of classifying

samples in given classes (in this case, two classes), we

have two values for each samples. To get one score

for each sample on which threshold / cut-off would

be applied, we calculate difference of probabilities. If

the difference is high, such layer has high confidence

for such samples, and if it crosses the cut-off for some

layer, the decision for sample will be made at that layer

itself. Hence, sample will not propagate further. This

reduces the confusion at subsequent layers.

• The cut-off point for each section is decided in a such

a way that sections corresponding to low-level features

have high cut-off and those for high-level features have

a low cut-off. The motivation behind fixing such cut-

off is that low level feature do not capture any specific

pattern, and hence a sample being classified at these

layers should be clearly discriminative even with such

generic features. To choose cut-off points for 165 lay-

ers, we pick suitable first and second value and divide

it into 165 equal parts. However, these first and second

value is chosen empirically using validation data (for

which higher accuracy is produced at low ambiguity).

• For samples which do not have enough confidence to

cross level of any layers, decisions are made by two

ways:

– Average of probabilities: Probabilities of sam-

ples is calculated from each layer and then aver-

age out. The class which has higher probability

will be the decision.

– Maximum Voting: Vote based on the probabili-

ties is made by each layer. The class which ob-

tain higher votes is assigned as final class.

3.3. Baseline DenseNet classification framework

For comparison, we also calculate the baseline accuracy

which is produced by pre-trained Densenet. As baseline,

features of last fully connected layer is used on the trained

neural network.

4. Results & discussion

We now discuss our experimentation, and then provide

results for different scenarios, along with various compar-

isons.

4.1. Experimental protocol

This subsection discusses the dataset, training-testing

protocol and evaluation metrics in detail.

4.1.1 Dataset description

We utilize break-His [14] dataset to validate the effective-

ness of proposed framework. All the images (7909) in the

dataset, collected from 82 different patients out of which 24

for benign and 58 for malignant. Four different magnifica-

tions were utilized to capture the images. Each individual

class such as benign and malignant has four sub-category.

The information about the distribution of images is given in

Table 1. Figure 1 shows the samples images of benign and

malignant tumor at lowest magnifications.
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Figure 4. Sequential modeling of multi-layered features.

Table 1. Detailed description of BreaKHis dataset [14].

Magnifications
Total Patient

40x 100x 200x 400x

Benign 625 644 623 588 2480 24

Malignant 1370 1437 1390 1232 5429 58

Total 1995 2081 2013 1820 7909 82

4.1.2 Training & Testing Protocol

In our experiments, we have randomly chosen 58 patients

(70%) for training/validation and remaining 25 for testing

(30%). We train the classifiers using images for the cho-

sen 58 patients, and, perform three trial for magnification-

specific study. Each trial is a random selection of training-

testing data. The trained models across each trial are tested

using images of the remaining 25 patients. We also employ

data augmentation to increase the data size. For augmen-

tation, we adopt rotation, flip, height shift, width sift and

translation. After augmentation, we have six times the orig-

inal training data.

4.1.3 Evaluation metrics

In this work, Patient recognition rate (PRR) is used as an

evaluation metric for the study, to make it comparable with

other existing methods. PRR is a ratio of correctly classified

images to total images of cancer images. The definition of

patient recognition rate is given as follows:

PRR =

∑
N

i=1
PSi

N
,PS =

Nrec

NP

(1)

where N is the total number of patients (available for

testing). Nrec and NP are the correctly classify images and

total cancer images of patient P respectively.

4.2. Sequential framework with deep features

In this subsection we discuss the results obtained us-

ing proposed sequential framework under various situations

which handle the ambiguous samples.

We take subsections of sequential framework increasing

in sets of 10 and calculate accuracy till the final layer in each

set. We start making such subsections from the last layers as

higher layers are richer in terms of high-level information..

To get more clarity on how accuracy varies when more num-

ber of layers are added to framework, we provide the graph

in Fig. 5. The vertical line shows an approximate point

after which the accuracy does not improve further for most

cases. The results corresponding to individual subsections

are reported in 2, 3, 4. Table 5 shows the behavior of

some random convolution layers and last dense layer. In ta-

ble 5, L1-L10 is corresponds to convolution layers and L11

represents the fully connected layer.

Table 2 illustrates the results of sequential framework

without considering the methods which resolves the am-

biguous samples. Each individual entry in table is repre-

sented by two values. First value is corresponds to patient

score while second represent the percentage of ambiguous

samples. The results correspond to the maximum voting

and average probability are reported in 3, 4. In all the

tables, values are presented in percentage (%).

Sequential framework with average voting: Under this,

we discuss the results which obtained in situation where

ambiguous samples are classified by calculating average of

probabilities assigned by layers and then classified in the

class which has larger average probability. The detailed re-

sults are illustrated in table 3.

Sequential framework with maximum voting: Under

this, we discuss the results which obtained in situation

where ambiguous samples are classified by calculating

votes given by layers and then classified in the class which

has larger number of votes. The detailed results are illus-

trated in table 4.

Observation based on Tables 2, 3, 4, 5:

• For 40x, the lower level layers contribute significantly

to the classification performance.
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Table 2. Performance of sequential framework with ambiguity. In the representation x-y, x denotes the performance, and y denotes the

ambiguity (%).

Mag.
Layers

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 165 Base-line

40x 92.39-0.53 92.30-0.29 91.66-0.20 91.04-0.09 91.73-0.0 91.40-0.0 92.06-0.0 91.90-0.0 93.22-0.0 92.72-0.0 92.72-0.0 92.56-0.0 92.89-0.0 93.38-0.0 93.38-0.0 94.71-0.0 94.71-0.0 84.72

100x 96.37-3.38 96.11-2.09 95.91-1.77 95.49-1.48 95.25-1.42 95.09-1.41 95.21-1.15 94.99-1.08 96.17-1.00 94.93-1.00 94.78-0.94 94.70-0.94 94.65-0.82 94.75 -0.75 94.75-0.75 94.76-0.72 94.76-0.72 89.44

200x 96.35-0.42 96.05-0.10 96.18-0.08 96.07-0.08 96.08-0.08 95.63-0.05 96.06-0.05 95.52-0.0 96.18-0.0 96.10-0.0 96.28-0.0 96.05-0.0 96.30-0.0 96.76-0.0 96.38-0.0 96.30-0.0 96.78-0.0 95.65

400x 92.36-3.48 92.47-2.64 91.49-2.10 90.86-1.66 90.44-1.41 90.22-1.24 90.17-1.20 90.19-1.17 90.11-1.10 90.03-1.10 89.93-1.09 89.93 -1.09 89.93-1.09 90.13-1.05 90.14-1.04 90.33-1.04 90.33-1.04 82.65

Table 3. Performance of sequential framework with probability averaging (%).

Mag.
Layers

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 165 Base-line

40x 91.57 92.06 91.57 91.07 91.73 91.40 92.06 91.90 93.22 92.72 92.72 92.56 92.89 93.38 93.38 94.71 94.71 84.72

100x 92.89 93.09 93.09 93.29 92.96 92.98 93.46 93.29 95.17 93.39 94.17 93.25 93.26 93.35 93.35 93.27 93.35 89.44

200x 95.85 95.97 96.00 95.98 96.00 95.64 96.06 95.52 96.18 96.10 96.28 96.05 96.30 96.76 96.38 96.30 96.78 95.65

400x 88.86 89.74 89.81 89.65 89.35 89.13 88.87 88.96 89.14 88.96 88.86 89.06 89.14 89.32 89.41 89.80 89.80 82.65

Table 4. Performance of sequential framework with maximum voting (in %).

Mag.
Layers

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 165 Base-line

40x 91.57 92.06 91.57 91.07 91.73 91.40 92.06 91.90 93.22 92.72 92.72 92.56 92.89 93.38 93.38 94.71 94.71 84.72

100x 92.63 95.90 93.29 93.28 93.05 93.07 93.46 93.13 94.87 93.13 93.41 93.34 93.26 93.35 93.35 93.35 93.35 89.44

200x 95.77 95.97 96.09 95.98 96.00 95.64 96.06 95.52 96.18 96.10 96.28 96.05 96.30 96.76 96.38 96.30 96.78 95.65

400x 86.45 87.85 88.54 88.16 87.95 88.67 88.48 88.49 88.81 88.70 88.70 88.70 89.01 89.25 89.25 89.52 89.52 82.65

Table 5. Performance of some random convolution layers and fully

connected layers (%).

Magnification-specific study

Mag. L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

40x 76.27 79.40 79.70 88.82 79.99 83.94 91.68 90.85 92.41 93.72 93.49

100x 79.53 89.03 90.49 87.70 88.56 83.30 93.54 93.76 93.98 93.53 93.91

200x 80.32 90.70 93.22 95.02 93.55 92.91 95.71 95.55 95.08 95.30 94.82

400x 72.69 79.02 80.34 88.56 77.00 79.14 87.76 87.81 88.74 87.88 87.85

Table 6. Performance comparison of sequential framework with

independent framework (in %).

Frameworks

Mag.

40x 100x 200x 400x

Sequential (with averaging) 94.71 93.57 96.76 92.47

Sequential (with maximum voting) 94.71 95.9 96.76 89.11

Independent model (considering all layers) 91.90 93.64 95.84 90.15

• As 400x is more specific in terms of structures, these

are better captured by higher level layers.

• For mid-level magnifications i.e. 100x ad 200x all lay-

ers contribute similarly.

• Performance using the features from only one convo-

lutional layer is generally worse than the results pro-

duced by modeling of deep multi-layer features.

• Lower convolutional layers perform worse than a

deeper convolutional layer in most of the cases.

• Deeper convolutional layers show better performance

than the fully connected layers (in most cases). It sig-

nifies the role of convolution layers to build more dis-

criminative features for classification.

• Information fused into multi-layered network through

Xgboost performs better than baseline DenseNet. The

improvement in accuracy over baseline signifies the

role of low-mid level features together with high level

features in multi-layered framework.

• Considering the ambiguity percentage in Table 2, we

note that the fraction of such ambiguous samples

which do not satisfy the cut-off for any layer, is very

small. In any case, even these are further resolved.

The ambiguity is calculated in same fashion as patient

score is calculated. However, here instead of taking

mean of all patient, we do the addition to know the

ambiguity score.

4.3. Comparisons across variants of the multi­
layered framework

Here, in Table 6, we first compare the framework con-

sidering the different approaches for resolution of ambigu-

ities. We note that the performance is complementary for

the 100x and 400x magnification, otherwise both strategies

seem to perform similarly. Having discussed the sequen-

tial framework, it is natural to compare the performance of
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Table 7. Performance Comparison of magnification specific system (in %). For the proposed method, the numbers in bracket provide its

rank based on the performance among all approaches.

Methods
Magnifications (values in percentage (%))

40x 100x 200x 400x

Existing works

Spanhol et al. [14] 83.8±4.1 82.1±4.9 85.1±3.1 82.3±3.8

Spanhol et al. [15] 90.0±6.7 88.4±4.8 84.6±4.2 86.10±6.2

Bayramoglu et al. [24] 83.08±2.08 83.17±3.51 84.63±2.72 82.10±4.42

Gupta et al. [20] 86.74±2.37 88.56±2.73 90.31±3.76 88.31±3.01

Song et al. [18] 90.02±3.2 88.9±5.0 86.9±5.2 86.3±7.0

Song et al. [19] 90.02±3.2 91.2±4.4 87.8±5.3 87.4±7.2

Han et al. [17] 97.1±1.5 95.7±2.8 96.5±2.1 95.7±2.2

Proposed

Baseline-accuracy (DenseNet) 84.72 89.44 95.65 82.65

Independent framework 91.90 93.64 95.84 90.15

Sequential framework with deep multi-layered features (maximum voting) 94.71±.88(2) 95.9±4.2(1) 96.76±1.09(1) 89.11±0.12(2)

the sequential approach with a scenario where each layer

treated independently, and a majority voting rule is followed

based on the decisions of the XGBoost classifier for such

independent features from different layers. Interestingly,

we find that, in most cases, the results from the sequential

approach are better or similar than those of the approach

that considers independent features. It can be observed that

performance at 400x for one case of sequential approach

is slightly lower than that of the independent framework.

The reason could be the less number of images at 400x

compared to other magnifications, due to which some of

the classifiers operating on multi-layered features may yield

somewhat lesser performance.

Figure 5. Variation in accuracy with number of layers

4.4. Performance comparison with state­of­art

To validate the effectiveness of proposed framework for

magnification-specific study, we compare our results with

the state-of-art approaches. The comparative results are

provided in Table 7 which depicts the proposed method

outperforms all contemporary methods except [17] in some

cases. In [17], a class structure-based deep convolution neu-

ral network (CSDCNN) is reported which embeds an ad-

ditional distance constraint. Thus, it non-trivially extends

upon an existing deep learning network. Our purpose in this

work is to understand the role of multi-layered features from

an existing architecture, as it is, with a contemporary clas-

sifier. The proposed framework outperforms most state-of-

the-art approaches even when fine-tuning an existing model,

rather than formulating a new deep architecture. In compar-

ison to [17], the proposed model is quite straightforward.

However, it would be interesting to consider an additional

distance constraint, to improve the effectiveness of the fea-

ture learning.

It is clear that, in order to get higher accuracy for each

magnification, the model corresponding to each magnifica-

tion should be designed individually. It is also intuitive that,

due to the variations in textures inherent at different lev-

els of feature representation, discriminative pattern may not

be captured by same number of layers for each magnifica-

tion. Thus, expectedly, the multi-layered sequential model-

ing yields better results than the others (Table 7).

It can be seen from the second part of Table 7 that in-

formation fused in multi-layered sequential network per-

forms better than baseline Densenet. The improvement in

accuracy over baseline signifies the role of low-mid level

features together with high level features in multi-layered

framework. Finally, as indicated earlier, the proposed

framework also outperforms the case when considering in-

dependent multi-layered features (for most of the cases). In

Table 7, along with values, we also provide the rank of

proposed approach in terms of the performance when com-

pared with existing frameworks.

5. Conclusion

In this paper we focus on better exploring the poten-

tial of fine-tuned pre-trained CNN models in breast cancer

histopathology image classification, and presents a sequen-

tial model which integrates the features of various layers.

Through various experiments, the results demonstrate that

the proposed multilayer deep feature fusion in sequential

framework indeed outperforms the baseline network, and

also the classification using only highest level features. This
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indicates that all high-level, mid-level and low-level fea-

tures can have useful discriminating information, if consid-

ered explicitly in an sequential framework. The proposed

approach is also shown to outperform most state of-the-art

classification methods.
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