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Abstract

In this paper, we study deep transfer learning as a way

of overcoming object recognition challenges encountered

in the field of digital pathology. Through several experi-

ments, we investigate various uses of pre-trained neural net-

work architectures and different combination schemes with

random forests for feature selection. Our experiments on

eight classification datasets show that densely connected

and residual networks consistently yield best performances

across strategies. It also appears that network fine-tuning

and using inner layers features are the best performing

strategies, with the former yielding slightly superior results.

1. Introduction

In pathology, tissues were traditionally examined under

an optical microscope after being sectioned, stained and

mounted on a glass slide. During the last years, progress

in scanning technologies made possible the high-throughput

digitization of glass slides at high resolution. Digital pathol-

ogy holds promise for biomedical research and clinical rou-

tine but raises great challenges for computer vision research

[28]. First and foremost, a laboratory can produce and scan

large amounts of slides per day, each of them being a multi-

gigapixel image. Moreover, those slides can contain many

different kinds of tissues with different staining techniques.

Their quantity, variability and size therefore require effi-

cient and versatile computer vision methods. The second

challenge is the scarcity of annotated data. Indeed, annota-

tions of digitized slides require expertise and are therefore

expensive and tedious to obtain.

In parallel, deep learning has recently had an impressive

impact over the computer vision field starting with work

of Krizhevsky et al. [22], which improved previous natural

image recognition performances by a large margin. More

recently, researchers have been working at applying those

new techniques to biomedical imaging [12, 23]. While cur-

rent results are promising, improvements were not as im-

pressive as they had been for traditional computer vision

tasks (recognition of natural scenes or objects such as Ima-

geNet [7], face recognition...) which can likely be attributed

to the lack of annotated data.

Interestingly, works such as [8, 40, 33] have shown that

convolutional neural networks can be used efficiently for

transfer learning, i.e. a network can be trained on a source

task and then be reused on a target task. This technique is

particularly handy when the data for the target task is scarce

and one has a large dataset that can be used for training as

source task. Therefore, it is not surprising that deep transfer

learning has been studied by the biomedical imaging com-

munity to overcome the data scarcity problem. In their re-

view [23], Litjens et al. identify two transfer learning strate-

gies for image classification: using off-the-shelf features ex-

tracted from pre-trained networks or fine-tuning these latter

networks for the task at hand. The first strategy uses fea-

tures learned from the source task without re-training the

network and use them to train a third-party classifier. Ex-

tracting such features is usually fast (with ad-hoc comput-

ing resources, i.e. graphical processing units) and this ap-

proach requires only to tune the hyper-parameters of the fi-

nal classifier, which can usually be done efficiently through

cross-validation. Those properties make off-the-shelf fea-

tures particularly appealing for biomedical imaging given

the aforementioned challenges. The second strategy con-

sists in using a network initialized with pre-trained weights

and partially re-training it on the target task. This approach

is more computationally demanding than using off-the-shelf

features and involves dealing with more hyper-parameters.

In terms of performance, as stated in [23], both strategies

have not been compared thoroughly yet in biomedical imag-

ing and there is no consensus about whether one is better

than the other.

In this work, we study thoroughly and compare several

strategies that involve off-the-shelf features and network

fine-tuning. We carry out several experiments over eight ob-

ject classification datasets in digital histology and cytology.

Different combinations of state-of-the-art networks and fea-

ture selection techniques using random forests are proposed

in order to answer questions of very high pratical relevance:

which network provides best-performing features? How
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should those features be extracted and then exploited to

get the best performance? Is fine-tuning better than using

off-the-shelf features? More generally, our empirical study

will also contribute to confirm the interest of deep transfer

learning for tackling the recurrent data scarcity problem in

biomedical imaging.

2. Related work

Transfer learning has been studied for a long time [29],

but its applicability in deep learning has only been discov-

ered recently. Decaf [8] and Overfeat [32, 33] are the first

published off-the-shelf feature extractor networks. The for-

mer is based on AlexNet [22], the latter is a custom archi-

tecture. Both were pre-trained on ImageNet and provide

generic features for computer vision tasks. Those features

can then used by other methods such as SVM [10] or ran-

dom forests [4] for final classification. Following those ad-

vances, works such as [40, 41] shed more light on the trans-

fer learning process by empirically analyzing the extracted

features for various tasks. One interesting conclusion of

these works is that shallow features seem to be generic

whereas deep ones are more specific to the source task.

Some of the first applications of deep transfer learning

in biomedical imaging were reported in [2, 6, 39] for pul-

monary nodule detection in chest x-rays and CT-scans using

Decaf and OverFeat. While those works have revealed the

potential of deep transfer learning in that field, the perfor-

mances were not significantly better than those of previous

methods. More recently, fine-tuning has been also inves-

tigated and compared with networks trained from scratch

and classifiers trained on off-the-shelf features on a wide

variety of biomedical imaging tasks [1, 9, 13, 31, 34, 38].

More specifically, digital pathology and microscopy are not

outdone with works on tissue texture [19], cell nuclei [3]

and breast cancer [15] classification from histopathology

images or analysis of high-content microscopy data [21].

Most works have used networks pre-trained on the Ima-

geNet image classification dataset. Others, like [21], have

used a custom network architecture pre-trained on a medical

dataset as source task.

While it is clear that training from scratch very deep

networks is not viable in most case due to data scarcity

[3, 38], there is currently no consensus and best practice

about how transfer learning should be applied to digital

pathology and microscopy. Some recent publications in the

biomedical field have shown that fine-tuning outperforms

off-the-shelf features [1, 19, 31, 34]. However, as noted in

[23], experiments in these papers are often carried out on a

single dataset, which does not allow to draw general con-

clusions. Moreover, those experiments do not use current

state-of-the-art networks. A short review of the networks

used in biomedical imaging is given in Supplementary Ta-

ble 1 and shows that the more recent and efficient resid-

ual and densely connected networks have been underused

or not used at all, in particular in digital pathology and mi-

croscopy.

3. Datasets

Our experimental study uses datasets collected over the

years by biomedical researchers and pathologists using the

Cytomine [27] web application. Using this platform, eight

image classification datasets were collected which are sum-

marized in Table 1. These contain tissues and cells from

human or animal organs (thyroid, kidney, breast, lung, . . . ).

For all datasets except Breast, each sample image is the

crop of an annotated object extracted from a whole-slide im-

age. The Breast dataset is composed of patches for which

the label encodes the type of tissue in which the central

pixel is located. Selected image samples for each dataset

are shown in Figure 1.

4. Methods

4.1. Deep networks

We follow the feature extraction and classification pro-

cess presented in Figure 2, which starts from a deep convo-

lutional neural network N pre-trained on a source task S. In

particular, we use ImageNet as the source dataset S and, for

each network, the pre-trained weights were retrieved from

Keras [5]. For N , we evaluate several architectures that

have been or are state of the art on the ImageNet classifica-

tion dataset [7] or that present interesting trade-off between

computational requirements and performances: VGG16,

VGG19 [35], InceptionV3 [37], ResNet50 [16], Inception-

ResNetV2 [36], DenseNet201 [18], and MobileNet [17]. In

the sequel, those networks will be respectively referred to

as VGG16, VGG19, IncV3, ResNet, IncResV2, DenseNet,

and Mobile. These networks can be used off-the-shelf or

fine-tuned, as explained below.

4.2. Offtheshelf feature extraction

Images are first resized to match the input dimension of

the network. Respectively denoting by hI × wI × c the

height, width, and number of channels of the input image I,

we extract a square patch p of (maximum) height and width

min(hI , wI) in the center of the image, which is then re-

sized to the network input size hp×wp× c. This extraction

process is parameter-free and preserves the aspect ratio of

the image, since all pre-trained networks takes square im-

ages as inputs (i.e. hp = wp).

The resized patch is then forwarded through N (loaded

with pre-trained weights). Given this input, the output a of

an arbitrary layer l (i.e. a set of feature maps) of dimensions

ha × wa × d is extracted where d is the number of feature

maps and ha and wa are respectively their height and width.

Because this tensor can be high-dimensional, one usually
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Dataset Domain Cls
Train Validation Test Total

Images Slides Images Slides Images Slides Images Slides

Necrosis (N) Histo 2 695 9 96 1 91 3 882 13

ProliferativePattern (P) Cyto 2 1179 19 167 4 511 13 1857 36

CellInclusion (C) Cyto 2 1644 21 173 2 1821 22 3638 45

MouseLba (M) Cyto 8 1722 9 716 4 1846 7 4284 20

HumanLba (H) Cyto 9 4051 50 346 5 1023 9 5420 64

Lung (L) Histo 10 4881 669 562 73 888 140 6331 882

Breast (B) Histo 2 14055 22 4206 8 4771 4 23032 34

Glomeruli (G) [25] Histo 2 12157 91 2448 12 14608 102 29213 205
Table 1. Sizes and splits of the datasets.

(a) Necrosis (b) Prolifera-

tivePattern

(c) CellInclu-

sion

(d) Breast (e) Glomeruli (f) MouseLba (g) HumanLba (h) Lung

Figure 1. Overview of our eight classification datasets (the display size does not reflect actual image size). For binary classification datasets,

negative and positive samples were respectively placed at the top and bottom of the figures.

applies a dimensionality reduction procedure R (e.g. global

average pooling, principal component analysis,...) to reduce

it to k features, yielding a feature vector f ∈ R
k. Here,

we limit our analysis to global average pooling (i.e. feature

maps averaging), which, unlike principal component analy-

sis for example, has the advantage of being parameter-free.

4.3. Finetuned feature extraction

For our experiments on network fine-tuning, we replace

the final fully-connected layer by a fully-connected layer

with as many neurons as there are classes in the current

dataset. We start by freezing the network and training only

the newly appended layer for 5 epochs with a learning rate

of 10−2. Then, we train the whole network for 45 epochs

with a learning rate of 10−5. We use Adam [20] as opti-

mizer with parameters β1 and β2 respectively set to 0.99

and 0.999 and no weight decay as suggested in the origi-

nal paper. We use the categorical cross-entropy as the loss

function. The fine-tuning is done using the training set ex-

clusively. Optionally, we use data augmentation to virtu-

ally increase the size of the training set. First, a maximum

square crop is taken at a random position in the input image.

Then, random flips and rotations are applied to the resized

patches before they are forwarded through the network. The

model is evaluated on the validation set and then saved at the

end of each epoch. When the fine-tuning is over, we select

among the saved models the one that performed the best on

the validation set.

4.4. Final classifier learning

When the features have been extracted for all images of

a dataset (either using off-the-shelf or fine-tuned networks),

they can be used for training the classifier C. We use ei-

ther linear support vector machines (SVM) [10] (with a

one-vs-all scheme for multiclass problems), extremely ran-

domized trees (ET) [11], or a fully-connected single layer

perceptron (FC), all as implemented in scikit-learn

[30]. SVM is the most popular method in the literature for

off-the-shelf features. ET are incorporated mainly for their

ability to compute feature importance scores. FC is a nat-

ural choice to mimic how the pre-trained network exploits

the features. Hyper-parameters of all methods were tuned

by slide-wise (or patient-wise) n-fold cross-validation on

the merged training and validation sets. Namely, they are

the penalty C for SVM, the maximum number of features

for ET, and the learning rate and number of iterations for

the single layer perceptron. Selected values for tuning are

given in Supplementary Section B.
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Figure 2. Feature extraction from pre-trained convolutional neural networks

4.5. Prediction

For prediction, the process is similar: patches are ex-

tracted from target images, forwarded through N , com-

pressed with R and classified with the learned classifier C.

As for the fine-tuning, we make additional experiments us-

ing directly the fine-tuned network for classifying the im-

ages (see Section 4.3 for parameters).

5. Experiments

In this section, we propose and thoroughly compare

different strategies for extracting and using features from

the deep networks introduced previously. We follow a

rigourous evaluation protocol described in Section 5.1.

Strategies are presented and evaluated one after the other in

Sections 5.2 to 5.7, then an overall comparison of strategies

is discussed in Section 5.8.

5.1. Performance metrics and baseline

For performance evaluation, each dataset (presented in

Section 3) is randomly splitted into training, validation and

test sets. Following the guidelines in [24], image patches

from the same slide are all put in the same set to avoid any

positive bias (induced by overfitting the slide preparation

and acquisition process) in the evaluation.

To evaluate the different transfer strategies, we use two

different metrics: the area under the receiving operating

curve (ROC AUC) for binary classification problems and

the classification accuracy for the multiclass problems. The

former has the advantage of not being affected by class im-

balance and it also does not require to select an operating

point. For the sake of readibility, a summary of the scores

for all experiments and datasets is given in Table 2 while

the detailed scores are only given in Supplementary Sec-

tion G. In all figures, we plot instead for each method its

rank among all methods compared in the same graph av-

eraged over all eight datasets. To associate high rank with

best results, we compute the rank when methods are sorted

in reverse order of performance (AUC or accuracy). For

example, since ten methods are compared in Figure 7, the

Figure 3. Average ranks of the methods for the “Last layer fea-

tures” experiment. Colors encode the choice of classifier for C
(orange for SVM, green for extremely randomized trees and red

for single layer perceptron).

maximum average rank is 10, corresponding to a method

being the best one on all eight datasets, and the minimum

average rank is 1, corresponding to a method always worse

than all others.

In order to have a baseline for comparison, we have

chosen a previously published tree-based image classifica-

tion algorithm [26] because it is a fast and generic method

which requires few parameters tuning. We use the algo-

rithm variant called ET-FL, which fits an SVM model on

features extracted from an ensemble of extremely random-

ized trees trained on random image patches. Parameters for

this method are either fixed to default values or tuned by

cross-validation (see in Supplementary Section B for de-

fault values and ranges).

5.2. Last layer features

Our first strategy follows a common approach in biomed-

ical imaging where off-the-shelf features are extracted at the

last layer of a pre-trained network. In our case, we take the

features from the last feature maps before the first fully con-

nected layer (the numbers of extracted features per network

are given in Supplementary Table 4). For each dataset and

network, we then tune and train the three types of classi-

fiers C (ET, SVM, and FC) with the extracted features, on

the union of the training and validation sets, and then we
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Figure 4. Average ranks for last layers’ features classified with

extremely randomized trees before (orange) and after (green) se-

lection with recursive feature elimination.

evaluate them on the test set. The resulting average ranks

for all classifiers and all datasets are given in Figure 3.

We observe that SVM and single layer perceptron are

more efficient at classifying from deep features than ex-

tremely randomized trees, with a slight advantage to SVM.

Mobile, DenseNet, IncResV2 and ResNet yield best perfor-

mances when combined with SVM or single layer percep-

tron, while for extremely randomized trees, only DenseNet

and ResNet are leading the way. Last layer features from

VGG16, VGG19 and IncV3 allow most of the time to beat

the baseline but they are clearly not competitive with fea-

tures from the other networks whatever the classifier. Over-

all, the best performance is obtained by combining ResNet

features with SVM.

5.3. Last layer feature subset selection

Our second strategy aims at checking whether all fea-

tures extracted from the last layer of the network are im-

portant for the final classification or if a small subset of

them would be sufficient to obtain optimal performance.

To answer this question, we use cross-validated recursive

feature elimination (RFE) [14] using importance scores de-

rived from extremely randomized trees to rank the features

(where the importance of a given feature is computed by

adding up the weighted impurity decreases for all tree nodes

where the feature is used, averaged over all trees). This

method outputs a sequence {(St, st)|t = 1, . . . , T} (built

in reverse), where St are nested feature subsets of increas-

ing sizes (with |S1| = 1 and |ST | = k) and st is the cross-

validation performance of an ET model trained on St. From

this sequence, we compute for each dataset:

kmin = min
{t=1,...,T :st≥max

t′
s
t′
−la}

|St|,

where la is a small performance tolerance (set to 0.005 in

our experiment). kmin is thus the minimum number of fea-

tures needed to reach a performance not smaller than the

optimal one by more than la.

On average across datasets and networks, this method se-

lected 7.5 % of the features (detailed numbers are given in

Supplementary Tables 8 and 9). The models re-trained us-

ing the selected features yielded comparable performance

when using ET as classifier (see Figure 4). Feature selec-

tion even improved ET performance on the IncV3, VGG19,

and VGG16 networks. Using SVM on the selected features

however leads to a performance drop compared to SVM

with all features. We believe that this difference is due to

the fact that the selection is optimized for ET and it is thus

likely to remove features that are useful for linear SVM and

not for ET, which are non-linear approximators.

Our experiments show that, among the available features

from the last layer, most of them are uninformative or re-

dundant and therefore only few of them are actually needed

for the prediction. This conclusion can also be drawn by

observing the recursive feature elimination cross-validation

curves (see Supplementary Figure 2). For all datasets and

networks, the accuracy converges very abruptly to a plateau

when the number of selected features increases, which indi-

cates that removing features from the learning set does not

impact negatively the predictive power of the models.

It is also interesting to note that the selected features are

not the same across datasets. For instance with DenseNet,

for a feature to appear in the subset of best features (deter-

mined with the importances obtained during the “Last layer

features” experiment) for all datasets, we need to consider

a subset of size 1477 (i.e. 77% of the features). We observe

similar results for the other networks (see Supplementary

Table 3). On the other hand, there can be a significant over-

lap between features selected by RFE for specific pairs of

datasets (see Supplementary Table 10). These results sug-

gest that the best features are task-dependent and that there

would be no interest in restricting a priori the subset of

transferred features, even when focusing on the domain of

digital pathology.

5.4. Merging features across networks

The third strategy consists in merging features from the

last layer of all the studied networks. Aggregating all fea-

tures results in a feature vector of size 9600. We observe in

Table 2 and Figure 9 that despite the fact that features from

all networks are combined, this strategy gives performance

results similar to but not better than using the best single

network, both with ET and SVM.

Using forest importance ranking procedure described

previously, we further analyze the information brought by

the last layer of each network (feature importances aver-

aged across datasets are given in Figure 5). We observe that

the features of DenseNet bring more than 25% of informa-

tion on average while they only account for 20% of all the

features. Moreover, the proportion of information brought

by the most informative features of DenseNet is higher than

for any other network. Following DenseNet, the next most

informative networks are IncResV2, ResNet, IncV3 and

finally the Mobile, VGG16 and VGG19 networks. Sur-

prisingly, the importances brought by the VGG networks
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Datasets

Strategy C P G N B M L H

Baseline (ET-FL) 0.9250 0.8268 0.9551 0.9805 0.9345 0.7568 0.8547 0.6960

Last layer 0.9822 0.8893 0.9938 0.9982 0.9603 0.7996 0.9133 0.7820

Feat. select. 0.9676 0.8861 0.9843 0.9994 0.9597 0.7438 0.8941 0.7703

Merg. networks 0.9897 0.8984 0.9948 0.9864 0.9549 0.8169 0.9155 0.7928

Merg. layers 0.9808 0.8906 0.9944 0.9964 0.9639 0.7941 0.9268 0.7977

Inner ResNet 0.9748 0.8959 0.9949 0.9964 0.9664 0.8131 0.9291 0.8113

Inner DenseNet 0.9862 0.8984 0.9962 0.9917 0.9699 0.8012 0.9268 0.7967

Inner IncResV2 0.9873 0.8948 0.9962 0.9982 0.9720 0.8137 0.9234 0.7713

Fine-tuning 0.9926 0.8797 0.9977 0.9970 0.9873 0.8727 0.9405 0.8641

Metric Roc AUC Accuracy (multi-class)

Table 2. Best score for each strategy and each dataset. The best and second best scores are respectively highlighted in green and orange.

Figure 5. Average relative importances (across datasets) brought

by each studied network when all their last layer features are ag-

gregated. The black bars quantify the proportion of features of

each network. The colors indicate the information brought by fea-

tures of decreasing importances: blue and red features are respec-

tively the most informative and least informative ones. Blue, or-

ange, green and red bars regroup importances of features that re-

spectively and cumulatively bring 10%, 25%, 50% and 100% of

the information for predicting the outcome.

Figure 6. Average ranks for models learned on merged layers of

networks compared to the baseline.

relatively to the number of features is non-negligible and

higher than the one of ResNet and IncV3. This may indicate

that features of those networks are redundant with features

of DenseNet and IncResV2 while features of VGG16 and

VGG19 are not.

5.5. Merging features across layers

This strategy aims at merging features across layers (at

several depths) for a given network. Given the results in

Figure 7. Average ranks for fine-tuned networks compared to the

baseline. Evaluation was done either by using SVM (orange) or

extremely randomized trees (green) on the fine-tuned features or

by predicting the outcome using the fine-tuned fully-connected

layer directly (red).

Section 5.2, we limit our analysis to the IncResV2, ResNet

and DenseNet networks. Those three networks have com-

plex structures and many layers which yield plenty of pos-

sible cut points for feature extraction. To reduce the number

of possibilities, we limit the extraction to bottlenecks of the

networks. Details about the layer selection are given in Sup-

plementary Section D.

The average ranks for each layer of all studied networks

are given in Figure 6. One first observation is that there is

no significant difference between SVM and ET in terms of

performance, unlike when we use the last layer only. Sur-

prisingly, DenseNet is not performing well with respect to

the other network while it was competitive with using the

last layer only. Merging the layers actually leads to a drop

of performance with respect to using only the last layer for

DenseNet, while it leads to a small improvement for the

other two networks (see Section 5.8).

As in the previous section, we use feature importances

to identify most informative features. Detailed importances

plots for each network can be found in Supplementary Fig-

ure 1. These plots clearly show that the most informative

features are spread over all layers. We also observe that the

relative importance of features in the early layers is higher

than the ones in deeper layers. One possible reason is that
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Figure 8. Average ranks for the baseline and the models trained

using features from layers inside the networks. For each network,

the layers are sorted by decreasing depth (from top to bottom).

last layers actually have more features than earlier ones and

as shown in Section 5.3, most of those features are either ir-

relevant or redundant. Therefore, the extremely randomized

trees actually discard most of them them during training.

Merging features from several layers results in large fea-

ture vectors for describing the images. Those large vectors

make this method less attractive as it results in longer classi-

fier training time. This is especially true for extremely ran-

domized trees. Unlike in the previous strategy however, fea-

ture extraction does not increase computation requirements

as only one forward pass through the network is needed to

extract all the features.

5.6. Inner layers features

For this strategy, we assess features extracted from each

layer separately. The motivation is to determine if there is

a layer that, taken alone, yields better performance than the

others, and in particular, the last one. Using the same cut

points as in the previous section to define the layers, we

learn as many SVM classifiers as there are layers, each us-

ing the features of a single layer.

Average ranks for each inner layer and each network are

given in Figure 8. In all cases, the last layer features are

always outperformed by features taken from an inner layer

of the network. The optimal layer is however always lo-

cated rather at the end of the network, while the first layers

are clearly never competitive. Unfortunately, we have not

found that a specific layer was better for all datasets, so in

practice the choice of the layer should be determined by in-

ternal cross-validation as we did. Interestingly, the baseline

either outperforms the early layers of the networks or yield

comparable results which tends to indicate that the features

provided by ET-FL are somewhat low-level.

5.7. Finetuned features

All previous experiments explored strategies using off-

the-shelf features. In this last strategy, we investigate fine-

tuning as described in Section 4.3. We focus on the same

three networks as in the previous sections (ResNet, In-

cResV2 and DenseNet).

The average ranks for the different fine-tuning methods

are given in Figure 7. With the three networks, best perfor-

mances are obtained by making predictions directly from

the fine-tuned fully connected layer. SVM and ET trained

on the features extracted from the fine-tuned networks are

clearly inferior, in particular with IncResV2. Note that, for

the other two, last layer features extracted from the fine-

tuned network are nevertheless better than last layer features

from the original network, when used as inputs to SVM (see

Figure 9). Fine-tuning is thus globally improving the qual-

ity of the features for these two networks. Overall, the best

performance is obtained with fine-tuned DenseNet.

5.8. Discussion

To allow comparison of all strategies, the best scores per

strategy and dataset are summarized in Table 2 and the av-

erage ranks of all methods evaluated in the previous exper-

iments are given in Figure 9.

Concerning the networks, ResNet and DenseNet often

yield the best performing models whatever the way they are

exploited. They are followed by the IncResV2, Mobile, and

IncV3 networks. Performances obtained with the VGG net-

works are below those of the others.

Concerning the methods, fine-tuning (and predicting

with the network) usually outperforms all other methods

whatever the network. Especially, this strategy yields sig-

nificant improvements for the multi-class datasets. For bi-

nary datasets, the improvement is often not as impressive,

but on three of these datasets, the performances of all meth-

ods are already very high (greater than 0.9).

Moreover, for each dataset, there is at least one inner

2381



layer that yields the best or second best scores and this best

layer is never the last one. This is confirmed by the rank

plot that shows that the ranks of the models learned on last

layer features are below those using inner layer features.

This might be explained by the fact that last layer features

are too specific to the source task (natural images).

Merging features across networks and layers yield re-

sults similar to using last layer features but they are outper-

formed by the best inner layers and also by fine-tuning. The

inferior performances of these methods could be attributed

to the fact that important features are lost among many re-

dundant and uninformative ones and they are thus suffering

from overfitting. One way to improve these methods could

be to perform feature selection. However, given that these

methods are already more computationally demanding, they

are definitely less interesting than fine-tuning and selecting

the best inner layer. In particular, merging features across

networks requires a forward-pass through all the selected

networks. Although only one pass is needed when merging

the layers, it still yields a large feature vector which makes

further training and tuning slower, especially for ET.

Throughout the experiments, we have also gained more

insights about the extracted features. By performing feature

selection, we have discovered that very few features are ac-

tually useful for learning efficient classifiers on our datasets

and the best features are task-dependent.

6. Conclusion

In this work, we have empirically investigated various

deep transfer learning strategies for recognition in digital

pathology and microscopy. We have observed that residual

and densely connected networks often yielded best perfor-

mances across the various experiments and datasets. We

have also observed that fine-tuning outperformed features

from the last layer of off-the-shelf networks. It also ap-

peared that using one network’s inner layer features yielded

performances slightly superior to using those of the last

layer and inferior to fine-tuning but with the advantage of

not having to re-train the network. We hope our thorough

study and our results will help practitioners to devise best

practices for efficient usage of existing deep networks.

In the future, we want to study further deep transfer

learning (e.g. combining inner layers and fine-tuning strate-

gies). We also aim at collecting and merging larger anno-

tated biomedical datasets to train networks using a large-

scale source dataset closer to our target tasks. We also plan

to integrate these strategies into the Cytomine [27] web ap-

plication to ease their application on novel datasets.
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