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Abstract

Personality recognition using nonverbal behavioral cues

is a challenging task in the Affective Computing field. The

majority of existing methods investigate personality assess-

ment in social contexts, such as crowded places or social

events, but ignore the role of behaviors as well as person-

ality in nonsocial situations (i.e. during individual activi-

ties). In this paper we introduce a novel dataset for behav-

ior understanding and personality recognition in a nonso-

cial context. Forty-six participants were recorded in an un-

constrained indoor space, related to a smart home environ-

ment, performing six tasks resembling Activities of Daily

Living (ADL). During the experiment, personality scores

were collected using self-assessment questionnaires. Fur-

thermore, a temporal framework using a Long-Short Term

Memory (LSTM) network is proposed to map nonverbal be-

havioral features to participants’ personality labels. Our

experiments showed that nonverbal behaviors are impor-

tant predictors of personality, confirming theories from the

personality psychology field.

1. Introduction

Personality recognition using behavioral observations is

a challenging task due to psychological, as well as techni-

cal modeling reasons [6]. First of all, underlying human

mechanisms for emotion and personality understanding are

still mostly obscure to the psychology society. Addition-

ally, human judgment regarding personality evaluation of

others is often too unstable, due to many possible interpre-

tations of human expressive power [12]. Research in Af-

fective Computing has shown big improvements over the

last years, where verbal and nonverbal behavioral cues have

been studied for a variety of applications, such as Human-

Computer Interaction (HCI) and Ambient Assisted Living

(AAL) [28].

Modeling human behavioral cues requires a deep un-

derstanding of several components like facial expressions,

gaze, hand gestures, body postures and conversation dy-

Figure 1. Architecture of the proposed system. First, spatio-

temporal clusters are derived from skeleton motion features and

spatial heat-maps. Second, from every cluster, LSTM network is

used to map posture sequences to personality recognition.

namics. Although facial analysis has provided interesting

applications such as automatic job screening [22], it limits

the user to be in a frontal position with respect to the com-

puter and in a controlled environment. On the other hand,

nonverbal behaviors of human body have been shown to be

robust, as well as an important predictor for personality [3].

In light of the fact that individuals’ interactions with oth-

ers are shaped by their personality [6], nonverbal behavioral

cues have been widely studied in social situations. For ex-

ample, as shown by [2], extrovert personalities tend to en-

gage in more face-to-face positions during conversations,

and in [4], shy personalities tend to avoid walking too close

to their neighbours. Nevertheless, psychological research

showed that psychological components such as social pres-

sure, may affect natural personality displays in social con-

texts [7]. Furthermore, for applications in AAL where, for

example, a considerable number of people live alone, and

reporting feelings of loneliness or social isolation, there is a

concrete need for systems able to understand behaviors and

personality in nonsocial contexts.

Therefore, this paper introduces a novel dataset, where

forty-six subjects perform six tasks divided in three ADL
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types: searching for objects, problem solving activities, and

daily routine activities. To the authors knowledge, this is

the first dataset that provides sensory data, skeleton track-

ing information and self-assessed personality labels [25],

for behavior and personality modeling in an unconstrained

indoor environment. Additionally, we propose a nonver-

bal behavior analysis based on skeleton motion features us-

ing Histograms of Oriented Tracklets (HOT) [20], spatial

heat-maps, as well as body posture features extracted in an

unsupervised way using Autoencoders [19]. Moreover, as

behaviors have a dynamic nature, temporal sequences are

investigated in a Long-short term Memory (LSTM) frame-

work, for personality recognition (Fig. 1).

The contributions of this paper are as follows: Firstly, we

introduce a novel dataset for personality assessment, where

forty-six subjects were recorded performing six activities.

The recorded behavior was spontaneous, as the participants

did not receive beforehand any indication on how to per-

form the tasks or about the goal of the study. Secondly, we

propose a novel framework for personality recognition, that

encodes spatio-temporal features, as well as body postures

in an unsupervised way, and models behavior dynamics us-

ing the LSTM network. Thirdly, by clustering the partici-

pants big five personality scores, we obtain higher depen-

dencies between traits, achieving results that are consistent

with the psychological theory proposed in [5].

2. Related Work

Personality Datasets. Personality computing has re-

ceived increasing attention in the computer vision commu-

nity, and consequently, several datasets have been proposed.

In [2], a dataset for behavior and personality analysis using

Free-standing Conversation Group (FCG) is proposed. The

authors used a multimodal approach, where audio, video,

infrared, Bluetooth and accelerometer data were recorded

in an unconstrained social environment for behavior under-

standing. Annotations for body detection and personality

were provided, and personality scores were correlated with

the analysis of social interactions and group formation. In-

stead, we would like to highlight that our dataset analyzes

behaviors of individuals that are alone in a room, concen-

trating on the display of personality during execution of dif-

ferent tasks. Studies linking face analysis, audio informa-

tion and personality have shown progress in the last years.

First Impressions challenge dataset was proposed in [22].

The goal of the data was to automatically evaluate the per-

sonality of subjects for a job screening application. Find-

ings were evaluated in a quantitative way, as no psycholog-

ical theories were linked to them. Therefore, in this paper,

we highlight the need of interdisciplinary research, between

psychology, computer vision and affective computing, for

enhancing the ability to understand and automatically rec-

ognize human personality on a novel benchmark dataset.

Nonverbal behavioral features. There is something in

the nature of individuals that leads observers to attribute

certain characteristics to them [3]. Since this pioneering

work, nonverbal behaviors have been studied extensively in

the fields of psychology and Affective Computing. In [15],

body movements of public speakers were analyzed and cor-

related to personality scores. The obtained results showed

that upper body motion (e.g. extracted from head, torso and

hands) was a reliable predictor for openness and neuroti-

cism traits. During social interactions, authors in [29] used

proxemics and visual attention features to predict Extraver-

sion and Neuroticism personality traits. In [23], a set of mo-

tion and proximity features was extracted for extraversion

prediction during Human-Robot Interaction, and similarly,

[17] predicts extraversion scores using attention features

during a work meeting. In these works, the five personal-

ity traits were treated independently, while in the current

study, we make use of a clustering technique to find higher

dependencies between the five personality traits, confirming

the psychological theory proposed in [5].

Posture dynamics using skeleton data. Since the dis-

tribution of low-cost depth sensors with skeleton estimation

algorithms [27], and the recent success of deep neural net-

work systems like Convolutional Neural Networks (CNNs)

[16], joints dynamics have been studied for a variety of tasks

like action recognition [9] and posture learning [18]. CNN

capabilities are optimized for feature extraction and learn-

ing using images, but since the skeleton data has a different

structure [10], approaches have been proposed to overcome

this issue. In [9], authors represent skeleton sequences as

images, to maintain the skeleton structure, joints of each

body part are concatenated by their physical connections.

Finally CNN networks learn the spatial temporal sequences

for action recognition. However, our approach consists of

encoding the joints spatial relations using an autoencoder

framework, while the temporal information is modeled us-

ing an LSTM network. Our proposed posture representation

is efficient and simplified, by removing background noise

existent in images, while being less demanding in terms of

processing power, computation time and amount of training

samples needed for CNN models.

3. Behavior and Personality in a nonsocial con-

text Dataset

While human behavior has been largely studied in so-

cial environments [2] and crowded places [1], few efforts

have been made towards the relation between human behav-

ior and personality in nonsocial situations, e.g. performing

individual tasks. In order to provide a new benchmark to

further study the relation between human behavior and per-

sonality recognition, in this paper we release the Behavior
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and Personality in a nonsocial context Dataset. 1

3.1. Experimental Design

The experimental design was inspired by both ADL

datasets [21], as well as problem-solving based psycholog-

ical tests. To create an unconstrained environment, no time

limit nor know-how was given to complete the proposed six

tasks. To elicit real personality manifestations in the most

unobtrusive way, problem solving level was varied every

two tasks. The experimental room was furnished with ta-

bles, chairs, a tea corner with a water kettle, and two office

cabinets, having each drawers filled with many different ob-

jects. All around the room, boxes and cases also containing

objects, were spread to challenge our subjects for the com-

pletion of the experimental tasks.

Tasks were organized in three groups called: “daily-

routine activities” with low problem solving difficulty,

“searching-activities” with medium problem solving diffi-

culty, and finally, “problem-solving activities” with high

difficulty. Once every task was completed, participants

were asked to exit the room to record the task completion

through magnetic sensors positioned on the door. In the

searching-activities, participants were requested to: 1) find

keys of two cabinets present in the room, and to 2) find an

item, the experimenter hid beforehand. These two activities

resemble daily activities of searching for items at home. In

the problem-solving activities, participants had to: 3) search

for an item that was not in the room, and to 4) memorize the

content in all drawers of the two cabinets. Since in the first

group of tasks, the participants found the requested object,

no one expected that in task 3 there would be no object. Af-

ter searching the room thoroughly, most of the participants

felt confused and started to wander around the room with-

out an evident goal. In the daily routine activities, we asked

the subjects to: 5) sit at the table to complete two question-

naires, and to 6) make tea and eat cookies. These last ac-

tivities are inspired from computer vision datasets and can

be used by the research community to further study the re-

lationship between activity and personality.

3.2. Video Data

The data was recorded using Kinect SDK 2.0 released

by Microsoft. The SDK skeleton tracking functionality de-

tects and tracks 20 joints on the human skeleton at around

30 frames per second. The coverage range in which the

tracking algorithm provides reliable results is from 0.5 me-

ter to 5 meters, while outside this range, skeleton informa-

tion was less reliable and was removed. The Kinect sensor

was placed at around two meters distance from the ground

to be robust from occlusions. Forty-six young adults were

1Dataset is available at https://project.dke.

maastrichtuniversity.nl/personality/

Figure 2. Example of the data released in this dataset, containing

the 3D joint coordinates, the user trajectory in each task, as well

as the depth image.

recorded for a total of 550 minutes, 16500 frames with an-

notated skeleton joints information were stored and depth

images were saved at the rate of 6 frames per second. For

privacy reasons, we decided to record only the depth images

and not the color images (Fig. 2).

3.3. Personality Data

In order to collect personality scores from each subject

in a unobtrusive way, we used the short version of the Big

Five Inventory (BFI-10), introduced in [25]. This short

version measures the Big-Five traits, namely, Extraversion,

Agreeableness, Conscientiousness, Neuroticism and Open-

ness, using 10 questions (i.e. two questions per personality

trait) and can be completed in less than one minute. Even

though shorter than the BFI-44 [14], it was shown to pro-

vide reliable scores because it was built by preserving the

questions that best correlate with the results of the original

inventory. In this study, we followed a first-person (self-

assessment) strategy, where participants were told that all

questionnaires would remain anonymous in order to avoid

biased answers.

4. Method

In this paper, we investigate nonverbal behavioral cues

for personality recognition on a novel dataset. Due to the

position of the camera, upper body joints are the most robust

to occlusion and noise, therefore, in our feature extraction

phase, we consider only eight joints: head, spine, left-right

shoulders, elbows and wrists. For each frame, behaviors

are represented in terms of joints local spatial relation (pos-

ture), motion, as well as global spatial location (heat-map

of the room). In this section, the aforementioned features

are explained in details.

4.1. Unsupervised Posture Representation

In this paper, we introduce a novel approach to learn up-

per body posture representation using autoencoders [19].
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Our approach consists of two parts: posture extraction and

posture learning.

Skeleton-based representation has shown promising re-

sults in encoding the spatial-temporal relation among joints

for action recognition using neural networks architecture

[9]. Therefore, we propose a new descriptor which is op-

timized for an autoencoder framework and it aims to learn

in an unsupervised way the skeleton joints local relation

through posture.

For every frame, we build a new binary image of size

s × s around the upper body skeleton data, where the pix-

els corresponding to the eight joints of interest are set to a

value equal to one, and the other pixels are considered as

background, with a value equal to zero. The image size

is selected to account for all possible situations in which

the joints could appear (e.g. when the arms are wide open

the overall posture size is bigger than when the arms are

closed). Single skeleton coordinates x, y are too sparse to

be learned in an efficient way, and moreover, the pose infor-

mation conveyed is limited. Hence, following their natural

physical connections (i.e. left shoulder and right shoulder),

related joints are connected by a line with a value equal to

one. Even though the 3D skeleton coordinates are converted

into a 2D descriptor, the z coordinate is not lost. During the

posture extraction, the coordinates are not normalized, nor

centralized, resulting in a raw skeleton descriptor that em-

beds the z coordinate (e.g. distance to the camera). Frames,

where the skeleton is far away from the Kinect sensor (high

value of z), will contain a body posture with a smaller size

than the ones in which the skeleton is closer to the sensor

(Fig 3). The advantages of our descriptor are the follow-

ing: 1) we preserve the local spatial relation between joints

for posture learning, and 2) we reduce the learning problem

complexity by using a binary image, where the desired in-

formation is set to a value equal to one, and the background

noise is set to zero.

Encouraged by the impressive results of autoencoders in

image reconstruction, a deep autoencoder is trained to min-

imize the input reconstruction error 2. For each autoencoder

layer la, the encoder f la and decoder gla functions are de-

signed to reconstruct the input data X , represented as a vec-

torized set of input features Xi = [x1, . . . , xn]
T ∈ Rn, as

good as possible in an unsupervised way. Therefore, given

input data Xi, the encoding step is obtained using the func-

tion f la , while the mid-level representation is denoted by

αla(i) = f la(W la
1
·αla−1(i)+bla) and the decoding step is

captured by the function gla . On the first layer we consider

α0(i) = Xi and on the following layers the input will be

represented by the projected data in the hidden units space

learned on the previous layer, so by αla−1. The reconstruc-

tion result is denoted by X̂i = gla(W la
2

· αla(i) + cla),
while on the following layers the reconstruction will be rep-

2For our experiments we used NVIDIA Titan X GPUs.

resented by α̂la−1. {W la
1
,W la

2
} are the weight matrices and

{bla , cla} are the encoding and decoding bias parameters on

each layer la of the autoencoder framework. The optimiza-

tion goal is to minimize the error between the input data

Xi and the reconstructed data X̂i, using stochastic gradient

descent with adaptive learning rate and cross-entropy (CE)

cost function defined as:

CE(X, X̂) = −

n∑

i=1

xi log(x̂i) +

nl1∑

j=1

λ‖αl1(xj)‖1 (1)

In Fig. 3, we start by visually inspecting the recon-

structed images using the deep autoencoder (with la = 2)

learned weights with nl1 = 900 hidden units in the first

layer and nl2 = 225 units in the second layer, values ob-

tained for the optimal value of the cost function in Eq. 1.

Different postures are clearly visible, where the 2D skeleton

information x, y embeds spatial relation between the joints.

Moreover, our learned representation shows to be robust to

skeleton size changes, embedding the third coordinate z.

Figure 3. Raw posture descriptors and corresponding reconstruc-

tions. The autoencoder weights learn the 2D joints relation, while

depth information is retained through the relative size of the skele-

ton.

4.2. Motion Features: Skeleton HOT

In [20], authors showed that analyzing the spatio-

temporal descriptors called tracklets, could improve the

recognition of human motion. A tracklet indicates the

movement of a subject, for a short period of time. In our

unconstrained experimental design, tracklets are considered

more robust, as well as, they can be more meaningful than

global trajectories. Indeed, due to the fact that ultimately

our subjects are completing the same tasks in a limited sce-

nario, subjects’ global trajectories risk to coincide. More-

over, it has been shown that thin slices of motion cues are

enough for personality prediction [3]. Hence, an adaptation

of the Histograms of Oriented Tracklets [20],[8], is used to

encode the magnitude and orientation of each upper-body

joint in a time window tτ . For every frame i, we compute

the magnitude and orientation of each upper body joint j

with respect to the previous frame, and the obtained values

are quantized in M = 3 bins for magnitude and O = 8
bins for orientation. Every histogram descriptor accumu-

lates values within a time window tτ = 1 second. Note that
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since body joints movements are highly correlated, we sub-

tract the magnitude and orientation value of the head joint

from all the other upper body joints.

4.3. Spatial heat­map

In every scenario, behaviors are correlated with areas

where they are performed, for example, the activity of mak-

ing tea takes place at the tea corner, whereas walking be-

haviors happens in the walking area. Therefore, we propose

a heat-map descriptor to correlate spatial information of the

scene with the degree of occupancy in each area. Firstly,

the video scene is divided into 3D nonoverlapping patches,

where every cube is of size h×w×d, namely height, width

and depth. Secondly, the heat-map descriptor is built by

counting the occurrences of the upper-body skeleton joint

coordinates inside each cube for every time window tτ . In a

time window where tτ = 1 second, our heat-map descriptor

indicates where the subject is in the scene, and additionally,

provides insights about the observed behaviors. If the sub-

ject is moving, trajectory points can be found in more than

one patch, whereas if the subject is stationary, points can be

found in only one patch.

4.4. Posture dynamic modeling and personality
recognition using LSTM

Although the features described above have been shown

to be important indicators of personality [15], [23], the tem-

poral nature of human behaviors also plays an important

role in personality recognition. For this reason, we propose

to use an LSTM network to learn behavior dynamics, and,

by adding a classification layer on top of the LSTM out-

put, recognition of the participants’ personality type is per-

formed.

LSTM networks have shown good accuracy for move-

ment learning, however, in cluttered and noisy scenarios, a

single LSTM network lacks learning capacity [1]. Hence,

inspired by [11], cluster analysis is performed on the spa-

tial heat-map and skeleton HOT information, to reduce mo-

tion ambiguities given by the unconstrained experiment sce-

nario. Finally, LSTM networks are trained on every cluster

data, for posture sequence learning and personality recog-

nition (our system architecture is shown in Fig. 1).

In this work we chose to employ the Gaussian Mixture

Models (GMM) technique, due to its ability to maximize the

component posterior probability given the data. GMM clus-

tering [30], is applied on the spatial heat-map (Section 4.3),

and the skeleton HOT information (Section 4.2). Our goal

is to find a set of clusters c1, .., ck that defines a clear sepa-

ration between behavioral patterns, for example, searching

for an object produces different spatio-temporal informa-

tion than the activity of making tea, as they are happening

in different regions of the scene and they are characterized

by different motion magnitudes. Given the ultimate goal of

personality recognition, we believe that splitting the posture

data in different behavioral patterns, encourages the LSTM

in learning to map joints spatio-temporal relation to person-

ality labels, by reducing the behavioral variability.

Posture features are extracted from each generated clus-

ter as displayed in Fig. 1, and are encoded for every frame

using the deep autoencoder technique (Section 4.1). A lim-

itation of our method is that some clusters do not have

enough data to encode posture sequences of 30 fps. For

this reason, we empirically down-sampled the skeleton se-

quence to 8 fps, without loss of information. Finally, for

each cluster c, a LSTM network is trained to map pos-

ture sequences x1, .., xl of length l = 8 to personality type

y, y ∈ {1, . . . , ny}, where each sequence item xi is en-

coded by the deep autoencoder and contains 225 features as

described in Section 4.1. Our training objectives are two-

fold: firstly, we aim to learn the posture dynamics in each

spatio-temporal cluster, and secondly, we aim to capture the

relations between behavior display and the associated per-

sonality label.

In this work, we implemented an LSTM network as in

[13], that uses memory cells ht for each time slot, with in-

put gates it, forget gates f t and output gates ot, applied on

the input node gt, and as output, a dense layer followed by

an element-wise sigmoid activation function, for enabling

a multilabel classification. The log loss function (cross en-

tropy) is used at each output (Eq. 1), to learn the true per-

sonality label y.

5. Experiment and Results

In this Section, the experiments are explained in detail.

Firstly, data analysis on participants’ personality scores pro-

vides the ground truth label for our personality recognition.

Secondly, personality recognition using an LSTM frame-

work is carried out to investigate the relation between low

level noverbal behavioral features and personality display.

5.1. Personality Data analysis

Affective Computing is dominated by the dimensional

approach of the Five Factor Models [28], where traits are

considered independently. However, this approach fails in

considering the configuration of these traits within a per-

son. In contrast, numerous studies confirmed the theory

proposed in [5], in which all the personality traits can be

organized in three major types: resilient, undercontrolled

and overcontrolled. Resilient personality type showed be-

low average neuroticism, and intermediate or above average

for the rest of the traits, the undercontrolled type usually

scores high in neuroticism and extraversion, and finally, the

overcontrolled type scores below average on extraversion

and above average on neuroticism.

In this study, we propose to follow a data-driven ap-

proach, applying a clustering technique on the participants
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personality scores, to find a higher convergence of traits.

The results of the short BFI version [25] give the score of

the five traits on a 1-10 scale, hence, every subject is repre-

sented by a vector v = 1 × 5. Hierarchical clustering was

applied, and three main clusters were found automatically

(ny = 3).

Figure 4. Z-score values of the personality traits in each personal-

ity types (undercontrolled, resilient, overcontrolled).

Following the same procedure as in [26], we display

the z-score of the three clusters compared to the popula-

tion mean provided by [24]. In Fig. 4, we show the results

which are consistent with the theory proposed in [5], as the

resilient personality type has a lower neuroticism score and

a higher extraversion score than the population mean. The

undercontrolled type exhibits extraversion as well as neu-

roticism above the population mean, and finally, the over-

controlled personality type showed a low score in extraver-

sion and a high score in neuroticism. The resilient cluster

was found to be the most populated with 21 participants,

the overcontrolled cluster contains 15 participants, and fi-

nally, the undercontrolled cluster contains 10 participants.

These findings provide a new way of labelling personality,

and will be used as ground truth for our personality recog-

nition experiments. The novelty of the approach is given

by the fact that our model is able to learn directly different

combinations of the big five traits using only three labels.

5.2. Spatio­Temporal Clustering of nonverbal be­
haviors

In the proposed study, we aim to map nonverbal behav-

ioral features to personality labels for personality recogni-

tion. The proposed benchmark is very challenging due to

its unconstrained structure, where participants could adopt

any strategy to complete the tasks. Therefore, in order to

reduce motion ambiguities, for each activity type explained

in Section 3.1, we aim to obtain spatio-temporal clusters

representing different behavioral patterns.

Skeleton motion features (Section 4.2) and the heat-map

descriptors (Section 4.3) are extracted at an interval of tτ =
1 second(s) and GMM clustering is applied to find k number

of clusters. The optimization of the intra-clusters variance

with respect to the total variance is used to select the correct

number of clusters k. For the searching-activity task k1 =

17 clusters were found, for the problem-solving activity task

k2 = 19 and finally, for the daily-routine activity tasks k3 =
16 clusters were found.

In Fig. 5, we show the top three most populated clusters

in each activity type. In the first row, the spatial heat-map

information is displayed, where pixel values range from

dark blue, which shows that the area is not visited, to dark

red, which defines areas that are visited the most. The sec-

ond row shows the mean values of the skeleton motion in-

formation in the respective clusters. Only the M = 3 mag-

nitude bins (y-axis) are considered for each of the j = 8
upper-body joints plotted in the x-axis with the following

order: head, left shoulder, right shoulder, left elbow, right

elbow, left wrist, right wrist and spine. Pixel values range

from dark blue, which shows that a bin is not populated,

to dark red, which defines a population with a high den-

sity. As displayed in Fig. 5, the spatio-temporal clus-

ters provide a salience map of the scene for each activity

type. In the searching-activity tasks, Fig. 5(a), participants

walked around looking for items, covering many parts of

the scene. This behavior is reflected in the motion informa-

tion, where all three clusters, report movements of almost

all the joints. In particular, motion information is very in-

formative for defining meaningful sub-behaviors of search-

ing activities. For example, cluster number one contains

high movement of the head (joint number zero), but slow

movement of the other joints, which characterize a walking

behavior. On the contrary, in cluster number two and three,

motion from the other joints is detected, showing that par-

ticipants were exploring the content of the scene in order to

complete the tasks. Fig. 5(a) and Fig. 5(b) display similar

behavioral patterns, where participants were challenged to

fulfill the tasks. On the other hand, daily-routine activities

(Fig. 5(c)), are characterized by a different spatio-temporal

salience map. Participants were mainly concentrated in the

areas of the table (filling questionnaire task) and the tea cor-

ner (making tea activity). In cluster one, movements of the

head and arms (elbow and wrist joints) indicate that partic-

ipants were performing the activity of making tea, whereas

in cluster number three, where participants were sitting at

the table, the reported joint movement is little. Our cluster

analysis provided spatio-temporal separations between be-

havioral patterns in an unsupervised manner (e.g. searching

behaviors versus making tea behaviors). Hence, for each

cluster, a LSTM network is trained using posture features

introduced in Section 4.4.

5.3. Personality Recognition

In order to examine the strength of our proposed frame-

work, in this section, two personality recognition experi-

ments are reported. We compare the performances of the

LSTM combined with clustering (LSTMcl), with a basic

LSTM framework (LSTM ), where, for each activity type,
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(a) (b) (c)

Figure 5. Clustering analysis on the three activity types: (a) searching-activities (b) problem-solving activities and (c) daily-routine activi-

ties.

an LSTM network is trained for personality recognition.

In the first experiment “cross-participant”, the mapping

between posture sequences and personality labels is evalu-

ated in every cluster, where we use 90% of the data across

participants for training and 10% for testing in a 5-fold

cross validation. The final accuracy (LSTMcl) variant,

is obtained computing the mean of the all clusters accu-

racy. Whereas, for the basic LSTM, (LSTM ), the final

accuracy is the average accuracy obtained on the test sam-

ple for each activity type. In the second experiment “per-

participant”, we test our system per participant (e.g. leave-

one-out scheme), where we use all the participants data ex-

cept one to train our two LSTM variants, and the left-one-

out for testing.

In Table 1, we report the classification F1 score as well as

the cross-entropy error (CE) across participants. Note, that

due to the fact that LSTMs are trained using a cross-entropy

loss function, we report CE as the probability that the pre-

dicted label ŷ is equal to the true label y (Eq. 1). Results

highlight that even a general LSTM framework can suc-

cessfully map the proposed nonverbal behavioral features

to personality display. Furthermore, it is evident that sepa-

rating behavioral patterns using a clustering technique, re-

duces the ambiguity of the posture sequences and improves

the personality recognition in each activity type. The best

accuracy result is obtained in the daily-routine type, where

participants were asked to perform daily activities, experi-

encing less pressure and a low level of challenge. This set-

up allowed them to create more relaxed and smooth move-

ments, that were better captured by our autoencoder-LSTM

framework.

In the AAL context, our framework should be able to

recognize the observed personality in real time, given par-

ticipants’ behaviors. In this experiment, we train the two

LSTM variants on all the participants except one, and use

the test participant p for the evaluation. This process is re-

peated for all the participants. To overcome the imbalanced

personality labels explained in Section 5.1, we randomly

LSTMs A1 A2 A3

f1 CE f1 CE f1 CE

LSTMcl 0.615 1.298 0.6404 1.287 0.7395 0.8765

LSTM 0.5263 1.697 0.5872 1.425 0.7269 0.9342

Table 1. F1 accuracy and cross-entropy error (CE) for personality

recognition cross-participant experiment, where A1=searching ac-

tivities, A2=problem-solving activities and A3=daily-routine ac-

tivities.

LSTMs A1 A2 A3

Recall CE Recall CE Recall CE

LSTMcl 0.5148 1.455 0.5333 1.403 0.6116 1.3897

LSTM 0.4745 1.852 0.5 1.4918 0.5134 1.5109

Table 2. Mean Recall accuracy and cross-entropy error (CE) for

personality recognition per-participant experiment, in the three ac-

tivity types. A1=searching activities, A2=problem-solving activi-

ties and A3=daily-routine activities.

under-sample the majority classes, obtaining a dataset with

ten participants per class. Therefore, for every participant

p in the dataset, we classify all the corresponding posture

sequences and we report the mean recall accuracy score, as

well as the CE in Table 2. The recall accuracy was cho-

sen in this experiment, because every sample of the test

participant has a fix personality label, making the preci-

sion accuracy always equal to 1, and therefore biasing the

f1 score. The obtained results are in line with the system

performance showed in the previous experiment, where the

proposed clustering approach improved the basic LSTM in

all the activity types, and the best accuracy was obtained in

the daily-routine activities.

Finally, to further investigate the personality recognition

performance of our system, in Fig. 6 we show the con-

fusion matrix of the daily-routine activity type from both

experiments. Overall, the resilient (r) and overcontrolled

classes (o) obtained the best results, showing that our LSTM

framework could learn to distinguish their different config-

urations of personality traits. In this sense, resilient and
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(a) (b)

Figure 6. Confusion matrix of the personality recognition for

daily-routine activities: (a) cross-participants experiment (b) per-

participant experiment. Labels are: u: undercontrolled, r: resilient,

o: overcontrolled.

overcontrolled classes contain significant differences in the

Extraversion and Neuroticism traits, suggesting that these

traits are the most relevant to our experiment.

6. Discussion

To understand which discriminative patterns our LSTM

network learns for each personality type, we display in Fig.

7 the sequences that obtained the highest confidence during

the recognition phase. In particular, we overlap the top 2 se-

quences of length l = 8, for each personality type during the

daily-routine activities. It is observed that the resilient per-

sonality (second row), presents significant difference in the

movement of the arms with respect to the other personality

types. Given its traits configuration (i.e. low Neuroticism

and high Extraversion), these sequences may represent re-

laxed and talkative personality attributes, showing no appre-

hension towards completing the tasks. On the other hand,

the undercontrolled (first row) as well as the overcontrolled

(third row) personalities, present sequences with stiffer pos-

tures. More specifically, the overcontrolled type, displays

arms linked and arched back, as the skeleton is in the act

of searching for objects. This nonverbal behavior may rep-

resent stress to complete the tasks, as well as no interests

in social contact with the experimenter, supporting its traits

configuration (i.e. high Neuroticism and low Extraversion).

Figure 7. Visualization of the sequences that obtained the highest

recognition confidence for each personality type, the labels are:

u:undercontrolled, r:resilient, o:overcontrolled.

7. Conclusion

In this paper, we introduced a novel dataset for behav-

ior understanding and personality recognition, recorded in

an unconstrained indoor scenario, related to a smart home

environment. Forty-six participants performed six tasks be-

longing to three daily activity types: searching, problem-

solving and daily-routine activities. To the best of the au-

thors’ knowledge, this is the first dataset that provides depth

data, skeleton tracking information for individual behav-

ior analysis and personality labels. Furthermore, we em-

ployed an LSTM framework to map nonverbal behavioral

features to personality labels. The effectiveness of the pro-

posed framework and the validity of the dataset was demon-

strated by two personality recognition experiments, provid-

ing new insights regarding the relation between nonverbal

behavioral cues and personality types.
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