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Abstract

Face images are one of the main areas of focus for com-

puter vision, receiving on a wide variety of tasks. Although

face recognition is probably the most widely researched,

many other tasks such as kinship detection, facial expres-

sion classification and facial aging have been examined. In

this work we propose the new, subjective task of quantifying

perceived face similarity between a pair of faces. That is,

we predict the perceived similarity between facial images,

given that they are not of the same person. Although this

task is clearly correlated with face recognition, it is different

and therefore justifies a separate investigation. Humans of-

ten remark that two persons look alike, even in cases where

the persons are not actually confused with one another. In

addition, because face similarity is different than traditional

image similarity, there are challenges in data collection and

labeling, and dealing with diverging subjective opinions be-

tween human labelers. We present evidence that finding fa-

cial look-alikes and recognizing faces are two distinct tasks.

We propose a new dataset for facial similarity and intro-

duce the Lookalike network, directed towards similar face

classification, which outperforms the ad hoc usage of a face

recognition network directed at the same task.

1. Introduction

Have you ever seen an actor or actress and thought that

they looked similar to someone that you know? Although

you would clearly not confuse the two as being the same

person, there might be some characteristics which may re-

mind you of a certain person. You might be able to describe

the attributes of why these people look alike, or the simi-

larity may not even be nameable. Although your internal

“face recognition algorithm” understands that these two in-

dividuals are different, something is still marking them as

similar.

Is this notion of face similarity captured as a natural

Face	Similarity	Face	Recogni1on	

Figure 1. Most face recognition algorithms embed faces in a space

such that different images of the same person are close, while faces

of different people are far. This goal is agnostic to the perceived

similarity of the faces. In this work, we learn a Lookalike network

that maps faces to an embedding space where the distance between

face images of different people depends upon perceived similarity

to human observers.

side effect by training a face recognizer that performs fine-

grained instance recognition? Recent face recognition al-

gorithms are trained with identity as classes, and nothing

explicitly captures the idea that some people look more like

others. As shown in Fig. 1 most of these algorithms are

trained by learning an embedding space in which images of

the same person are encouraged to be close, while images of

different people are far, without regard for how similar they

appear. That is, so long as images of different people are

“far enough”, there is no motivation or reward for arrang-

ing faces in the embedding space according to the perceived

similarity of the faces.

Besides the interesting question of how face recogni-

tion and face similarity are related, there are also obvious

applications for which a lookalike network would be bet-

ter suited. For example, applications such as Microsoft’s

CelebsLike.Me website or Google’s Arts & Culture App

have become popular by presenting a user with people sim-

ilar to themselves. In addition, this type of network can be

well-suited for movie casting to choose actors who appear
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similar to real-life people.

Using this intuition we present what we believe is the

first paper to investigate face similarity as an independent

task. First, we show that this intuition is correct by collect-

ing a dataset which examines the relationship between face

similarity and face recognition. We then present the looka-

like network which learns an embedding space specifically

for this task. Finally, we present results which show that our

lookalike network successfully learns how to measure face

similarity, and is able to generalize to other datasets as well.

2. Previous Work

Although we propose the new task of learning facial sim-

ilarity, our work is highly related to a few different subjects

that are well-studied. First, since we are dealing with facial

images, our work is highly related to the face recognition

task. However, as we move from identity-as-category into a

ranking approach, our work is also closely related to image

similarity and metric learning. In this section we describe

the prior work in these fields.

2.1. Face Recognition

Face recognition is one of the most widely researched

topics in computer vision. One of the first papers to tackle

the subject appeared in 1966 [4], although that work re-

quired manually derived facial measurements (such as the

locations of the corners of the eyes, the top of the nose,

etc.) This early work already shed light on some of the later

challenges of face recognition such as pose and expression

invariance.

As the field progressed, features began to be extracted

directly from image pixels. Some work used dimensional

reduction techniques on the pixels themselves for classifica-

tion. Some examples include Eigenfaces [24], Fisherfaces

[2] and Laplacian Faces [11]. Other works described more

advanced features based on ones that worked for images in

other domains. Examples include the use of SIFT [13], his-

tograms of oriented gradients [6] and Local Binary Patterns

[1].

Recent years have seen the use of deep neural networks

into almost all subproblems of computer vision. One of the

main advantages in using these networks is that there is no

longer a need to design features by hand, allowing the net-

work to learn appropriate features for a specific task. Con-

volutional networks have also achieved state of the art re-

sults in face recognition. Taigman et al. [23] propose a deep

neural network for face verification. Their network requires

the images to be aligned to facial landmarks before apply-

ing the network. Schroff et al. [21] trained on unaligned

images using a large database and triplet loss. Parkhi et

al. [17] managed to achieve similar results while training a

deeper network and a much smaller training set.

Although there has been extensive work on face recog-

nition as far as we know there has been no work that specif-

ically addresses the concept of face similarity. However,

there have been a few commercial applications which allow

you to upload an image and search a celebrity database for

the most similar images. For example, Mircosoft Inc. has a

website called www.celebslike.me, which provides this ser-

vice. Although they do not describe a specific algorithm

they use for this task, they do link to the MSR-Celeb-1M pa-

per [10]. This paper also addresses the task of face recogni-

tion, and therefore it can be assumed that similarity is mea-

sured by a network trained for face identity verification.

2.2. Similarity Learning

Measuring the similarity between two images has been

an important task in image retrieval and computer vision

fields. Traditionally, many works used the distance between

low-level feature representations to infer similarity. Fea-

tures such as texture [25, 16], shape [3], or other features

such as SIFT [15] can be extracted from an image and com-

pared to each other. Although this can yield good results

for simple images, it tends to not perform as well for gen-

eral images since these low-level features do not capture the

high-level semantic concepts necessary to measure similar-

ity as perceived by a human.

To capture these higher-level concepts, other papers tried

to represent images using classifier outputs [26, 20]. The

main idea is that since these classifiers extract higher level

information, they can be used for the image similarity task

on a wider range of images. Although these do yield better

results, the use of strictly semantic information eliminates

the concept of visual similarity. For example, [7] examine

the relationship between semantic and visual similarity and

show that both are important.

Training on triplets of images to learn metric distances

appears to have been introduced in [8, 9]. A triplet of im-

ages is comprised of two from the same category that are

considered more similar, and one from a different category

that is considered less similar to the others for learning a

max-margin distance function over triplets. With the recent

success of deep neural networks on many different tasks,

they have been used for image similarity as well. The gen-

eral idea in these works is to learn an embedding space in

which distances between images correspond to similarity.

For example, [27] proposes training a deep neural network

using a triplet loss to learn this embedding space, which in

turn motivated the FaceNet triplet loss [21].

Our work is similar to these more recent deep learning

approaches with a few key extensions. First, we focus on

face similarity rather than general image similarity. Rather

than an instance classification problem, ours is clearly one

of determining similarity. This is an important distinction

since humans have dedicated neural processing for faces
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[22] differently that other images; therefore, we believe fa-

cial similarity should be treated separately from general im-

age similarity as well. In addition, datasets that contain sub-

ject identity are not sufficient for training a facial look-alike

network. We collect our own ground truth specific for this

task by mining human opinions of who looks like whom.

The collection of this dataset adds additional complexities

and opportunities. Finally, since face similarity is somewhat

subjective, we integrate the disagreement between workers

into our learning.

3. Measuring The Difference Between Similar-

ity and Recognition

As described in Sec. 1, facial similarity and face recog-

nition are related, yet distinct tasks. Although we should

expect them to be highly correlated, our initial hypothesis

is that a network trained for one specific task would not

yield optimal results for the other. Therefore, in order to

verify this hypothesis, we conducted an experiment to show

that this is true, and show where the two tasks differ. More

specifically, we use results from a state of the art face recog-

nition algorithm, and show why it does not yield optimal

results for a facial similarity task.

3.1. Face Recognition Algorithm

To test our hypothesis we used the VGG-Face CNN de-

scriptor [17]. This is descriptor is extracted by using a “very

deep” convolutional neural network made out of 11 layers,

the first 8 of which are convolutional and the last 3 of which

are fully connected. The advantage of using this architec-

ture appears to be that the network can achieve state of the

art results with relatively small datasets. For example, in

[17] they show comparable results to Facenet [21] while us-

ing less than 1% of the training samples.

In [17], two different ways of training the network are

discussed. One method is to learn the embedding using

triplet loss. The other is to train it as a classification net-

work, using a softmax layer during training with a loss re-

lated to the identity of the face. After the network is trained,

the final classification layer is removed and the penultimate

layer is used as the embedding for face recognition. Since

similar results were achieved in each case, we use the sec-

ond method. Using a pre-trained network we verify its ac-

curacy by testing on LFW [12] using their standard training

and testing split. We achieve an ROC-AUC of 0.9773, on

par with most recent face recognition results .

3.2. Data Collection

To test the performance of this facial recognition net-

work at the task of facial similarity, we need to collect a

new dataset that captures human opinions on who looks like

whom in a face dataset. Using Amazon Mechanical Turk,

we ask workers to compare two pairs of faces and choose

the pair that looks more alike.

For this task we decide to use the Color-Feret Dataset

[19, 18]. Although the Color-Feret dataset is considered an

easy dataset for face recognition (compared to more recent

ones such as LFW) we decide to use it for this task for a

few reasons. First, since we trying to examine how well a

descriptor extracted from a face recognition algorithm per-

forms on face similarity, we wish to have a dataset with

excellent face recognition performance. That is, we want to

ensure that the reason our face recognition descriptor does

not perform well on similarity is not because it is not doing

a good job on face recognition in the first place, but because

the two tasks are inherently different. Second, since the

photos are taken in controlled settings we believe it would

be easier for a labeler to make a judgment on how similar

the faces appear to each other. Finally the dataset is well

organized, and identities are guaranteed to be unique and

accurate.

Since we wish to use this dataset to examine how well the

VGG Face Descriptor performs on this task, we prefer to in-

tentionally select specific images for comparison which will

allow us to learn the most about the relationship between

face recognition and face similarity. We select a single im-

age per identity from the dataset (for simplicity we select

the simple forward facing image with neutral expression)

because we are interested in face similarity and not recog-

nition. Then, we find the distance between the VGG face

descriptors of all images in the dataset.

We then bin all pairs into 10 different bins based on their

distance in the embedded space. For example all pairs of

images whose Euclidean distance between them is 1.2-1.25

are in one bin, pairs whose distance is 1.25-1.3 would be

in another bin, etc. We wish to compare pairs from a cer-

tain bin to pairs in all other bins. For example, if the face

recognition distance is a good proxy for facial similarity,

we would expect pairs which are in bin 1.1-1.15 to appear

more similar than pairs in the 1.2-1.25 bin. We therefore

select 100 test cases from each bin for labeling. Since we

have 10 bins, and we are comparing each bin to all others,

we have a total of 100×
(

10

2

)

= 4500 pairs of pairs.

Using Amazon Mechanical Turk, we conduct an experi-

ment where we present a pair of pairs to a worker and ask

which pair of faces appear more similar to each other. An

example of the task is shown in Fig 2. Each Mechanical

Turk worker is presented with 10 random pairs of pairs, and

each task is performed by 10 different workers.

3.3. Data analysis

Results are presented in Fig. 2(b), where each cell aij
at row i column j of the matrix is a comparison of a pair

with distance di to a pair of distance dj . The bins are in

increasing order (that is i > j means that di > dj). Fig.
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Figure 2. Results showing the performance of the VGG descriptor

at the task of facial similarity. (a) An example of our Amazon Me-

chanical Turk task used for examining this relationship. (b) The

number of times the row bin was chosen over the column bin (ig-

noring tests if there was not at least a 80% agreement). The header

signifies the distance upper bound for each bin. More details can

be found in Sec. 3.3.

2(a) shows the number of tasks (out of 100) where pairs

with distance di were selected as more similar than pairs

with distance dj . We ignore comparisons where there was

not at least an 80% agreement among the workers (therefore

aij + aji ≤ 100 ). This means that at least 8/10 labelers

agreed that a certain pair was more similar. We do this to

ensure that we are examining meaningful pairs.

When first examining Fig. 2(b) it is clear that there is

a strong correlation between the distance in the recognition

embedding space and the perceived similarity. For example,

the fact that the top right corner has high values shows that

when comparing a small-distance pair to a large-distance

pair, the small-distance pair is almost always selected as the

more similar. Even though these numbers do not reach 100,

it is usually not because the larger bin pair was selected but

simply because there was not 80% agreement. This can be

seen in the bottom left corner where most cells are approx-

imately 0.

However, the top left corner of the matrix shows evi-

dence that although similarity and recognition are similar,

they may not necessarily be the same. In this region we are

looking at tasks where both pairs have relatively small dis-

tances. Since the difference of the distances is small, many

of the tasks do not yield an agreement of 80% or above.

However, when examining the pairs which do result in a

high agreement we find that aij is not much bigger than

aji. That is, in many cases workers selected the pairs with

higher distance as the more similar. In fact when adding

the 5 smallest distance bins being compared to each other

(The top left quarter of the matrix), and comparing the sum

of the upper triangle (pairs of pairs which were labeled in

accordance to their embedding distance) to the sum of the

bottom triangle (those who were labeled inversely to what

the embedding predicted), the accuracy is only 66.43%.

Therefore, although 2(b) clearly shows that there is a

strong correlation between similarity and recognition, it ap-

pears to not work very well when looking at a group of

images which distances are relatively small. That is, al-

though the recognition embedding can clearly separate the

“not similar at all” from the “somewhat similar”, it does

not do a great job at finding the most similar image in that

group. This is an important deficiency since in many situ-

ations this would be the goal of face similarity. We would

like our similarity measure to be able to select the “most

similar person”, just as face recognition is tasked with se-

lecting one single identity.

4. The Lookalike Network

In order to predict the perceived similarity of faces to

more accurately reflect human opinion, we need to train the

network specifically targeted for that task. However, it is

much harder to collect a face similarity dataset than a face

identity database. This is because one can extrapolate an

identity of a face using different metadata such as captions

or tags, as in [10]. This allows for large datasets with thou-

sands of identities and millions of images. Since face simi-

larity cannot be explicitly derived from such meta data it is

infeasible to train a deep convolutional neural network for

this task from scratch in an unsupervised or semi-supervised

manner.

Therefore we decide to use a pre-trained network for face

recognition and then fine-tune the weights from that initial

state to perform well at the facial similarity task. This is a

reasonable idea since we expect that many features which

are useful for face recognition will also be useful for face

similarity. In fact in Sec. 3.3 we have shown that the two

tasks are highly correlated. Therefore we predict that start-

ing with this pre-trained network and retraining it for our

task should yield good results. We do this by adding a triplet

loss layer on top of the original VGG-Face network. We

then fine-tune this network on a new dataset that we collect

that is targeted at capturing perceived facial similarity.

4.1. Data Collection

As far as we know, there is no public database that in-

cludes information on facial similarity we decide to collect

our own novel database. We design a task to collect the

dataset with the following characteristics:

1. The task should explicitly collect information regard-

ing perceived facial similarity.

2. The task should focus on images which are likely to

be considered similar to one other. As discussed in

Sec. 3.3 these are the images which the face recogni-

tion network’s distance, when interpreted as a measure

of facial similarity, gets wrong. In addition, we are

much more interested in finding the most similar im-

age amongst a group of somewhat similar images, than

2461



Figure 3. An example of our Mechanical Turk Task. The worker is

directed to drag/drop images from the bottom row such that images

which are more similar to the top image are on the left, and images

which are less are on the right.

in finding examples of more similar faces to a query

face from a pool a faces where none look particularly

similar to the query at all.

3. Since perceived facial similarity is a subjective mea-

sure, we would like to have multiple workers complete

the task.

4. Since we are using triplet loss for training, we would

like to be able to extract multiple triplets from a single

task, thus maximizing the amount of data we have for

training.

We therefore frame the task as a ranking task. Each task

is composed of a reference query face (I0), and the 6 most

similar faces from a set of other identities based on the orig-

inal VGG embedding distance (I1...6). We use this embed-

ding distance since as shown in Sec. 3.3 these images are

more likely to be considered as similar faces to the query

face. We then present the images in the following man-

ner. In the top row we present I0 six times. Underneath we

present I1...6 in a random order. The worker is then tasked

with reordering images from the bottom row by dragging

and dropping them so that the most similar image would

appear on the left, while the most different image would ap-

pear on the right. The reason we present the query image

multiple times is in order to make the face comparison eas-

ier to the worker (by just comparing images vertically). An

example of the task can be seen in Fig. 3

We decided to use the Names100 dataset [5] for this ex-

periment for a few reasons. First, it is a larger dataset than

the Color-Feret and thus gives us more images to work with.

Second, as opposed to the Color-Feret dataset it is com-

prised of images “in the wild” and thus the network should

generalize better to other datasets and images on the web.

Third, as opposed to other datasets such as LFW [12] and

CelebA [14] it is not comprised of celebrity photographs.

We believe this is important since knowing a person might

skew how similarity is judged. Finally, although the exact

identity is not provided we can infer at least some identity

from the names. Thus, we can ensure that images I0 and

I1...6 are not of the same identity by rejecting any image

with the same name as I0.

We randomly select 5000 images from the Names100

dataset. Then we use each of the 5000 images as a query

image and select the 6 most similar images with different

names based on the original VGG embedding, creating a

total of 5000 Hits. We have 10 different workers complete

each Hit. Since in a subjective task it is difficult to iden-

tify and remove lazy workers, we simply count how many

images the worker rearranged and remove all results from

workers who did not rearrange at least 1.5 images per hit

(on average).

4.2. Training

Once we have collected the dataset, we retrain the net-

work to specialize at the task of facial similarity, producing

the Lookalike Network. We frame this as a ranking problem

and seek to find an embedding which will better represent

face similarity as compared with the face recognition em-

bedding. We choose to use a triplet loss for the fine tuning

of the network, where the loss is defined as:

L =

n
∑

i=1

max(0, ‖f(xa
i )−f(xp

i )‖−‖f(xa
i )−f(xn

i )‖+α)

(1)

Where xi = (xa
i , x

p
i , x

n
i ) represents a triplet of images,

and f(x) ∈ R
d is the output of the network. The loss func-

tion attempts to learn an embedding in which the anchor

images xa
i are closer to the positive images x

p
i than the neg-

ative ones xn
i by at least α. For image recognition [27] this

is done by selecting positive datapoints from those with the

same identity as the anchor, and negatives from those im-

ages from other class identities. In our case, we would like

an image which workers ranked as more similar to the an-

chor face to be closer to the anchor than an image ranked

more distant.

When performing training using triplet loss, the question

of how to select triplets is an important one which can sig-

nificantly effect the resulting model. We can select triplets

from our Mechanical Turk task by using our query image

as an anchor, and then using all pairs of similar images as

positives or negatives. Since each task has six images, we

have a total of
(

6

2

)

= 15 pairs. Each triplet has what we call

a confidence level. The confidence level is defined as the

percentage of people who ranked the positive image over

the negative. Therefore, the positive and negative images

are organized in such a way so that the confidence level is

always above 0.5.

All these triplets may be considered to be hard triplets.

Since we originally selected images for the tasks which had

a low distance in the VGG embedding space, we know that
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Training
Testing on

hard triplets

Testing on

easy triplets
Total

Original

VGG Face
56.4% 100% 78.2%

Only hard

triplets
66.7% 86.65% 76.68%

Include easy

triplets
65.42% 97.15% 81.36%

Table 1. Triplet accuracy. We compare the original face recog-

nition network (second row) to our Lookalike network with two

different training setups. One which solely uses triplets from the

Hits (third row), while the other introduces random easy triplets as

well (fourth row). We present the accuracy on both hard (second

column) and easy (third column) triplets. Because we test on an

equal number of hard and easy triplets, the last column is simply

the mean of the first two columns.

they are all somewhat similar to the anchor (as discussed in

Sec. 3.3). Therefore, simply fine tuning on these examples

might cause the network to make mistakes regarding sim-

pler images. We therefore try an additional training setup

which adds random easy triplets to the training data. The

advantage is that we can do this for free without the need for

manually annotating more data. Since we know that images

with a large distance in VGG space will be almost surely

be perceived as not similar (as shown in Sec. 3.3), we can

simply select one of those. In our implementation we sim-

ply select the positive as any one of the images from the Hit

(small VGG distance) and as a negative we select a random

image whose distance is larger than the median distance be-

tween the anchor and all other images in the dataset.

We use TensorFlow for training. We set α = 0.05 and a

batch size to 32. We use stochastic gradient descent with an

Adam Optimizer and a learning rate of 10−4. When training

with additional random triplets, we set the probability of

selecting a random triplet to 0.5.

5. Results

We divide our dataset into a 90%-10% split to test our

algorithm. We ensure that there are no identities overlap-

ping between the two dataset splits. The results presented in

this section are the averages taken over five splits using ran-

dom sampling. First, in order to affirm that the Lookalike

network is able to learn similarity we simply measure the

triplet accuracy of the test set. Results are presented in Ta-

ble 1. We show the results from the original VGG network,

the Lookalike network trained strictly on hard triplets, and

the Lookalike network trained including easy triplets. In a

similar fashion we measure the accuracy of each network

on hard triplets and easy triplets.

As expected our network is able to do a much better job

on hard triplets, increasing the accuracy by approximately

10%. However, when training the network solely on them,

the Lookalike network appears to get some easy triplets

wrong. This is in contrast to the original VGG Face net-

work which manages to easily reject random distant faces

with 100% accuracy. With training, the network weights are

updated without any penalty when originally distant faces

are brought closer together. By adding easy triplets to the

training set, this issue is remedied, and achieves a 97% ac-

curacy on easy triplets while still performing very well on

hard ones.

Table 2 presents our accuracy results for triplets in differ-

ent ranges of confidence. It is preferable that if the worker

agreement is higher (the more workers selected the positive

over the negative), the accuracy of our algorithm should also

be higher. One way to think of this is that if the Lookalike

makes a mistake on a low worker agreement triplet, we dis-

please fewer workers than if the network get a high worker

agreement triplet wrong. The table shows that the original

VGG networks essentially does poorly in all different agree-

ment levels (random is 50%). Using the Lookalike net-

work we do not only perform better in all different worker

agreement levels, but our accuracy improves with the as the

agreement gets higher which is the desired result. The fact

that accuracy drops slightly for the 0.9-1 range could simply

be because there are not many triplets in that range.

In order to show that our algorithm performs better not

just on individual triplets, but at ranking as a whole, we ex-

amine a few ranking metrics on the original images selected

by the VGG network vs. our reordering. Table 3 shows the

probability of the top ranked face being in the top k posi-

tions. As shown, the Lookalike network generally places

the top ranked image in a higher position. In addition we

also calculate the Normalized discounted cumulative gain

(NDCG) by using the equation:

NDCG6 =
1

ODCG6

6
∑

i=1

2reli − 1

log2(i+ 1)
(2)

Where reli is defined as 6 minus the average position the

image was placed (therefore relevance scores range from 6-

0) and ODCG6 is the optimal discounted cumulative gain

(when the images are ordered by their average position).

The Lookalike network produces an increases the NDCG

from 0.844 to 0.891.

We present visual examples of our results in Fig. 4.

Although our algorithm does not always get the exact or-

der correct, there are a few patterns which seem to hint at

why our algorithm does better. For example, in the top row

examples the original VGG network seems to rank people

from the opposite sex as similar. This may not hurt in the

recognition task because if the image is already far enough

in embedding space the gender is irrelevant. However, for

similarity we have found that mostly people do not consider

faces from opposite genders as similar (although it does oc-

casionally occur). This is likely one of the cues that Looka-

like is able to pick up. Although the gender issue is one
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Figure 4. Examples of the ranking results. The images are shown in the order of their ground truth ranking, i.e., the average ranked position

by the Mechanical Turk workers). We then show the ranking by using the face recognition and our newly trained embedding distance.

factor, it is certainly not enough to justify the entire im-

provement. In fact since the images are already somewhat

similar there are not many sets which include opposite gen-

ders. The second row shows examples in which gender does

not play a role since all images are of the same gender. In

fact there is not clearly an attribute we can point to which

makes the images more or less similar. These examples em-

phasize the fact that our network is able to learn something

more subtle than simply counting attributes that match (see

further discussion in Sec. 6)

Finally, the last row shows some failure cases. In the

left example the Lookalike network seems to rank people

with glasses higher than the others since the query image

has glasses as well. From our observation, it is usually true

that workers tend to consider people with glasses more sim-

ilar to each other. However, this example clearly shows that

this is not always true. On the right we appear to have the

opposite problem in which our network did not rank the

bearded person highly, even though the query is bearded

and the VGG network correctly ranked it as the top image.

In order to ensure that Lookalike generalizes to other

datasets we conduct two additional experiments. First, we

return to the data we collected in Sec. 4.1. Our goal is to

examine if the Lookalike network performs better on pairs

image pairs that are nearly the same distances apart in VGG

face recognition embedding space. We examine the images

from 5 bins with the smallest distance (corresponding to the

top left corner of Fig. 2(b)) and measure the accuracy of

the original embedding vs. the Lookalike embedding to the

worker consensus. The original VGG embedding achieves

Network 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

Original

VGG Face
52.54% 53.48% 55.39% 54.77% 54.88%

Lookalike

Network
58.90% 64.09% 68.92% 73.99% 73.5%

Table 2. Accuracy on triplets in a specific confidence range. The

accuracy of the Lookalike network seems to be closely correlated

with the agreement/disagreement among subjects.

66.43% match to the worker consensus, while Lookalike

achieves an increase to an accuracy of 78.1%. Thus, we are

able to fix some of the concerns raised in Sec. 3.3.

We run an additional experiment on the CelebA dataset.

As in our training case we select the 6 most similar images

using the VGG network and then reorder them using the

Lookalike network. We then select the top image from each

list and have workers arrange the photos in order of simi-

larity. We then examine the average position of each image

for each Hit. In this dataset we see the same effect as in the

Names100 dataset. That is, the top image selected by the

Lookalike network is placed higher than the VGG embed-

ding selection 58.33% of the time, while the opposite (the

VGG selected face being closer to the query than Looka-

like’s selection) is only true 39.33% of the time. (The other

2% are ties). A few examples are shown in Fig.5.

6. Discussion

There can be several reasons why the Lookalike network

ends up outperforming the original reporposed VGG face
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k = 1 2 3 4 5

Original

VGG Face
21.6% 38.4% 57.6% 76.2% 88.4%

Lookalike

Network
33.2% 50.77% 66.86% 81.92% 92.44%

Table 3. Precision of the top-ranked image being in the top k im-

ages for k = 1 . . . 6 as ranked by the two networks.

embedding at the task of understanding perceived facial

similarity. First, it could be that the task of face recognition

and face similarity are the same, and our fine tuning is sim-

ply improving both tasks by adding more training data. We

therefore recalculate the accuracy of the Lookalike network

on LFW [12]. Since all images in the Names100 dataset [5]

we use for training are cropped in a certain manner, we crop

the LFW images in the same way to ensure that our method

is not performing poorly because of dataset bias (for this

experiment we only use LFW images with landmarks pro-

vided).

The original VGG network achieves a 99.7% AUC while

the lookalike network only reaches 97.69%. This shows that

our network has learned a new task that actually slightly

impaired its utility at the task of face verification, rather than

simply improving face recognition.

Another interesting claim would be that our network is

simply learning facial attributes and is just looking for faces

which share the most amount of attributes in common. This

claim would be more difficult to analyze since there is no

comprehensive and agreed upon list of nameable facial at-

tributes, and the importance of each attribute with respect to

the concept of facial similarity is unclear. However, we de-

cided to do a first order approximation of this by looking at

the attribute distribution of the most similar faces as deter-

mined by the VGG embedding and our Lookalike network.

We use the CelebA dataset [14] since it contains ground

truth attributes for each image. We then randomly select

one image per identity and use both networks to select the

6 most similar people in the database. In addition, we also

select the six most similar people by attribute. That is, we

use a binary attribute vector (of length 40) to describe each

image, and then look for the six images with the smallest

Hamming distance. We then examine the average Ham-

ming distance in attribute space between the top six images

and the query face. The VGG network has an average dis-

tance of 0.185 while the Lookalike has an average distance

of 0.179, i.e., slightly more similar in terms of matching

attribute count. For comparison, the six closest images in

attribute space are only an average of 0.05 away. Therefore,

it appears that the Lookalike network does not select faces

with significantly more attributes in common, and therefore

is probably learning something deeper than just attributes.

Figure 5. Examples from our CelebA experiment. We show four

examples of a query image and the most similar image as judged

by the VGG network and our Lookalike network. Also shown is

the percent of workers which judged the image to be more similar

to the query.

7. Conclusion

In this work, we introduce the novel task of learning per-

ceived facial similarity. We show through data collection

that facial recognition and perceived facial similarity are

related, yet distinct tasks with the former being based on

categories (identity) and the latter based on relative similar-

ities. We describe a method to training a deep neural net-

work to perform this specific task, including data collection

and triplet selection methods. Finally we present our results

which show that our algorithm, the Lookalike network, out-

performs the face recognition baseline at the task of predict-

ing which faces will appear more similar to a human. We

also show that this improvement generalizes across multiple

face datasets. We believe that this provides strong evidence

that face similarity is an important topic and distinct from

face recognition. We hope that the dataset that we have col-

lected to train Lookalike, which we will share, will inspire

further work in this area.

This work raises many questions which we believe are

important to investigate. First, there are more tasks to ad-

dress in the realm of perceived facial similarity. For exam-

ple, although in this work we attempt to find a more similar

instance of a face, it would be interesting to aggregate dis-

tances across multiple photos or videos of people.

In addition, since there is not always a consensus on

which two images are more similar, a deeper investigation

can be done to determine advantageous ways to integrate

this level of agreement into the triplet loss training. That

is, should the margin depend on how confident we are that

the positive is closer than the negative? Should the loss be

higher if we violate a more confident triplet? These ques-

tions will not only improve the task of image similarity, but

can translate to other domains in which these issues exist

such as relative attributes, image memorability, and more.
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