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1. Introduction
Understanding scenes and events is inherently a multi-

modal experience. We perceive the world by both looking

and listening (and touching, smelling, and tasting). Ob-

jects generate unique sounds due to their physical proper-

ties and interactions with other objects and the environment.

For example, perception of a coffee shop scene may in-

clude seeing cups, saucers, people, and tables, but also hear-

ing the dishes clatter, the espresso machine grind, and the

barista shouting an order. Human developmental learning

is also inherently multi-modal, with young children quickly

amassing a repertoire of objects and their sounds: dogs

bark, cats mew, phones ring.

However, while recognition has made significant

progress by “looking”—detecting objects, actions, or peo-

ple based on their appearance—it often does not listen. Ob-

jects in video are often analyzed as if they were silent en-

tities in silent environments. A key challenge is that in a

realistic video, object sounds are observed not as separate

entities, but as a single audio channel that mixes all their

frequencies together. Audio source separation remains a

difficult problem with natural data outside of lab settings.

Existing methods perform best by capturing the input with

multiple microphones, or else assume a clean set of sin-

gle source audio examples is available for supervision (e.g.,

a recording of only a violin, another recording containing

only a drum, etc.), both of which are very limiting prereq-

uisites. The blind audio separation task evokes challenges

similar to image segmentation—and perhaps more, since all

sounds overlap in the input signal.

Our goal is to learn how different objects sound by both

looking at and listening to unlabeled video containing mul-

tiple sounding objects. We propose an unsupervised ap-

proach to disentangle mixed audio into its component sound

sources. The key insight is that observing sounds in a va-

riety of visual contexts reveals the cues needed to isolate

individual audio sources; the different visual contexts lend

weak supervision for discovering the associations. For ex-

ample, having experienced various instruments playing in

various combinations before, then given a video with a gui-

tar and saxophone (Fig. 1), one can naturally anticipate

what sounds could be present in the accompanying audio,

and therefore better separate them. Indeed, neuroscientists

report that the mismatch negativity of event-related brain
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Figure 1. Goal: audio-visual object source separation in videos.

potentials, which is generated bilaterally within auditory

cortices, is elicited only when the visual pattern promotes

the segregation of the sounds [6]. This suggests that syn-

chronous presentation of visual stimuli should help to re-

solve sound ambiguity due to multiple sources, and promote

either an integrated or segregated perception of the sounds.

We introduce a novel audio-visual source separation ap-

proach that realizes this intuition. Our method first lever-

ages a large collection of unannotated videos to discover a

latent sound representation for each visible object. Specifi-

cally, we use state-of-the-art image recognition tools to infer

the objects present in each video clip, and we perform non-

negative matrix factorization (NMF) on each video’s audio

channel to recover its set of frequency basis vectors. At this

point it is unknown which audio bases go with which visible

object(s). To recover the association, we construct a neu-

ral network for multi-instance multi-label learning (MIML)

that maps audio bases to the distribution of detected visual

objects. From this audio basis-object association network,

we extract the audio bases linked to each visual object,

yielding its prototypical spectral patterns. Finally, given a

novel video, we use the learned per-object audio bases to

steer audio source separation.

2. Overview of Proposed Approach

Single-channel audio source separation is the problem of

obtaining an estimate for each of the J sources sj from the

observed linear mixture x(t): x(t) =
∑J

j=1
sj(t), where

sj(t) are time-discrete signals. The mixture signal can be

transformed into a magnitude or power spectrogram, which

encode the change of a signal’s frequency and phase content

over time. We operate on the frequency domain, and use the

inverse short-time Fourier transform (ISTFT) to reconstruct

the sources.

The training pipeline is illustrated in Fig. 2. Given an

unlabeled video, we extract its visual frames and the cor-

responding audio track. Then, we perform NMF indepen-

dently on its audio magnitude spectrogram to obtain its
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Figure 2. Unsupervised training pipeline. For each video, we perform NMF on its audio magnitude spectrogram to get M basis vectors.

An ImageNet-trained ResNet-152 network is used to make visual predictions to find the potential objects present in the video. Finally, we

perform multi-instance multi-label learning to disentangle which extracted audio basis vectors go with which detected visible object(s).
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Figure 3. Our deep multi-instance multi-label network takes a bag of M audio basis vectors for each video as input, and gives a bag-level

prediction of the objects present in the audio. The visual predictions from an ImageNet-trained CNN are used as weak “labels” to train the

network with unlabeled video.

spectral patterns. M audio basis vectors are extracted from

each video. For the visual frames, we use an ImageNet pre-

trained ResNet-152 network [2] to make object category

predictions, and we max-pool over predictions of all frames

to obtain a video-level prediction. The top labels are used

as weak “labels” for the unlabeled video. The extracted ba-

sis vectors and the visual predictions are then fed into our

MIML learning framework to discover associations.

We design a deep MIML network (see Fig. 3) for our

task. A bag of basis vectors is the input to the network, and

within each bag there are M basis vectors extracted from

one video. The “labels” are only available at the bag level,

and come from noisy visual predictions of the ResNet-152

network trained for ImageNet recognition. The labels for

each instance are unknown. We incorporate MIL into the

deep network by modeling that there must be at least one

audio basis vector from a certain object that constitutes a

positive bag, so that the network can output a correct bag-

level prediction that agrees with the visual prediction. We

use the multi-label hinge loss to train our MIML network.

The MIML network learns from audio-visual associa-

tions, but does not itself disentangle them. To collect high

quality representative bases for each object category, we use

our trained network as a tool. The audio basis-object rela-

tion map after the first pooling layer of the MIML network

produces matching scores across all basis vectors for all ob-

ject labels. We perform a dimension-wise softmax over the

basis dimension (M ) to normalize object matching scores

to probabilities along each basis dimension. By examining

the normalized map, we can discover links from bases to

objects. We only collect the key bases that trigger the pre-

diction of the correct objects (namely, the visually detected

objects). Further, we only collect bases from an unlabeled

video if multiple basis vectors strongly activate the correct

object(s). See Fig. 5 for examples of typical basis-object

relation maps. In short, at the end of this phase, we have a

set of audio bases for each visual object, discovered purely

from unlabeled video and mixed single-channel audio.

During testing, as shown in Fig. 4, given a novel test

video, we obtain its audio magnitude spectrogram through

STFT and detect objects using the same ImageNet-trained

ResNet-152 network as before. Then, we retrieve the learnt

audio basis vectors for each detected object, and use them

to “guide” NMF-based audio source separation. Finally, we

perform ISTFT on separated spectrogram to reconstruct the

audio signals for each detected object.

3. Example Results

We use AudioSet [1] as the source of unlabeled training

videos. We use 193k video clips of musical instruments,

animals, and vehicles, which span a broad set of unique

sound-making objects.

For “in the wild” unlabeled videos, the ground-truth of

separated audio sources never exists. To facilitate quan-

titative evaluation, we construct a dataset of 23 AudioSet

videos containing only a single sounding object selected

from our val/test set, including 15 musical instruments, 4

animals, and 4 vehicles. We take pairwise video combina-

tions from these videos, and 1) compound their audio tracks
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Figure 4. Testing pipeline. Given a novel test video, we detect the objects present in the frames, and retrieve their learnt audio bases. The

bases are collected to form a fixed basis dictionary with which to guide NMF of the test video’s audio channel. The basis vectors and the

learned activation scores from NMF are finally used to separate the sound for each detected object, respectively.

by normalizing and mixing them and 2) compound their vi-

sual channels by max-pooling their respective object pre-

dictions. Each compound video is a test video; its reserved

source audio tracks are the ground truth for evaluation of

separation results. To evaluate source separation quality, we

use the widely used BSS-EVAL toolbox [8] and report the

Signal to Distortion Ratio (SDR). We perform four sets of

experiments: pairwise compound two videos of musical in-

struments (Instrument Pair), two of animals (Animal Pair),

two of vehicles (Vehicle Pair), and two cross-domain videos

(Cross-Domain Pair).

Table 1 shows the results. Our method is compared

against a series of baselines: 1) Upper-Bound: our per-

formance upper-bound that uses AudioSet ground-truth la-

bels to train the deep MIML network; 2) K-means Cluster-

ing: unsupervised NMF approach, where K-means cluster-

ing is used to group separated channels; 3) MFCC Unsu-

pervised: a representative off-the-shelf unsupervised audio

source separation method [7]; 4) Visual Exemplar: super-

vised NMF using bases from an exemplar video; 5) Un-

matched Bases: supervised NMF using bases of the wrong

class; 6) Gaussian Bases: supervised NMF using random

bases. The results demonstrate the power of our learned

bases. Compared with all baselines, our method achieves

large gains, and it also has the capability to match the sepa-

rated sources to meaningful acoustic objects in the video.

To facilitate comparison to prior audio-visual methods

(none of which report results on AudioSet), we also perform

the same experiment as in [5] on visually-assisted audio de-

noising on three benchmark videos used in previous studies:

Violin Yanni, Wooden Horse, and Guitar Solo. Following

the same setup as [5], the audio signals in all videos are

corrupted with white noise with the signal to noise ratio set

to 0 dB. To perform audio denoising, our method retrieves

bases of detected object(s) and appends the same number of

randomly initialized bases as the weight matrix to supervise

NMF. The randomly initialized bases are intended to cap-

ture the noise signal. As in [5], we report Normalized SDR

Instrument Animal Vehicle Cross-Domain

Upper-Bound 2.05 0.35 0.60 2.79

K-means Clustering -2.85 -3.76 -2.71 -3.32

MFCC Unsupervised [7] 0.47 -0.21 -0.05 1.49

Visual Exemplar -2.41 -4.75 -2.21 -2.28

Unmatched Bases -2.12 -2.46 -1.99 -1.93

Gaussian Bases -8.74 -9.12 -7.39 -8.21

Ours 1.83 0.23 0.49 2.53

Table 1. We pairwise mix the sounds of two single source Au-

dioSet videos and perform audio source separation. Mean Signal

to Distortion Ratio (SDR in dB, higher is better) is reported to

represent the overall separation performance.

Wooden Horse Violin Yanni Guitar Solo Average

Kidron et al. [3] 4.36 5.30 5.71 5.12

Lock et al. [4] 4.54 4.43 2.64 3.87

Pu et al. [5] 8.82 5.90 14.1 9.61

Ours 12.3 7.88 11.4 10.5

Table 2. Visually-assisted audio denoising results on three bench-

mark videos, in terms of NSDR (in dB, higher is better).

(NSDR), which measures the improvement of the SDR be-

tween the mixed noisy signal and the denoised sound.

Table 2 shows the results1. Note that the method of

Pu et al. [5] is tailored to separate noise from the fore-

ground sound by exploiting the low-rank nature of back-

ground sounds. Still, our method outperforms [5] on 2 out

of the 3 videos, and performs much better than the other two

prior audio-visual methods [3, 4]. Pu et al. [5] also exploit

motion in manually segmented regions. On Guitar Solo, the

hand’s motion may strongly correlate with the sound, lead-

ing to their better performance.

Next we show some qualitative results to illustrate the

effectiveness of MIML training. Fig. 5 shows example un-

labeled videos and their discovered audio basis associations.

For each example, we show sample video frames, ImageNet

CNN visual object predictions, as well as the correspond-

ing audio basis-object relation map predicted by our MIML

1We take the numbers for existing methods from Pu et al. [5].
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(a) visual prediction: violin & piano    
audio ground-truth: violin & piano

(c) visual prediction: 
acoustic guitar & electric guitar    

audio ground-truth: drum & electric guitar

(e) visual prediction: dog    
audio ground-truth: dog

(f) visual prediction: train    
audio ground-truth: train

(b) visual prediction: violin    
audio ground-truth: violin & piano

(d) visual prediction: train    
audio ground-truth: acoustic guitar

Figure 5. In each example, we show the video frames, visual predictions, and the corresponding basis-label relation maps predicted by our

MIML network. Please see our supplementary video for more examples and the corresponding audio tracks.

network. We also report the AudioSet audio ground truth

labels, but note that they are never seen by our method.

The first example (Fig. 5-a) has both piano and violin in

the visual frames, which are correctly detected by the CNN.

The audio also contains the sounds of both instruments, and

our method appropriately activates bases for both the vio-

lin and piano. Fig. 5-b shows a man playing the violin in

the visual frames, but both piano and violin are strongly

activated. Listening to the audio, we can hear that an out-

of-view player is indeed playing the piano. This example

accentuates the advantage of learning object sounds from

thousands of unlabeled videos; our method has learned the

correct audio bases for piano, and “hears” it even though it

is off-camera in this test video. Fig. 5-c/d shows two exam-

ples with inaccurate visual predictions, and our model cor-

rectly activates the label of the object in the audio. Fig. 5-e/f

show two more examples of an animal and a vehicle, and the

results are similar. These examples suggest that our MIML

network has successfully learned the prototypical spectral

patterns of different sounds, and is capable of associating

audio bases with object categories.

Please see our supplementary video for more qualitative

results, where we use our system to detect and separate ob-

ject sounds for novel “in the wild” videos. They lack ground

truth, but results can be manually inspected for quality.
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