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Abstract

Video description approaches are based on encoder-

decoder sentence generation using recurrent neural net-

works (RNNs) by integrating temporal attention mecha-

nisms into each model, in which the decoder network pre-

dicts each word in the description by selectively giving more

weight to encoded features from specific time frames. We in-

corporate audio features, in addition to image and motion

features, for video description based on encoder-decoder

recurrent neural networks (RNNs). To fuse these modali-

ties, we introduce a multimodal attention model that can

selectively utilize features from different modalities for each

word in the output description. We apply our new frame-

work for video description using MFCC and state-of-the-art

audio features such as SoundNet. Results confirm that our

attention-based multimodal fusion of audio features with

visual features outperforms conventional video description

approaches.

1. Introduction

Recent work in video description has demonstrated the

advantages of integrating temporal attention mechanisms

into encoder-decoder neural networks, in which the decoder

network predicts each word in the description by selectively

giving more weight to encoded features from different times

in the video. Typically, two different types of features, im-

age features and motion features, are combined by naı̈ve

concatenation [14]. We recently proposed Attention-based

Multimodal Fusion, in which we introduced a new use of at-

tention: fusing information across different modalities [6, 7]

(as well as over time). We use modality loosely to refer

to different types of features, such as appearance (image),

spatiotemporal, and audio features derived from the video,

such as appearance, motion, or depth, as well as features

from different sensors such as video and audio features.

A longstanding area of research addresses how to ef-

fectively combine information from multiple modalities for

machine perception tasks [4]. As far as we know, our ap-

proach is the first to fuse multimodal information using at-

tention across modalities in a neural network. Our method

dynamically adjusts the relative importance of each modal-

ity to generate better descriptions. The benefits of our pro-

posed multimodal attention include: (1) the modalities that

are most helpful to discriminate each word in the descrip-

tion can dynamically receive a stronger weight, and (2)

the network can detect interference (e.g., noise) and other

sources of uncertainty in each modality and dynamically

down-weight the modalities that are less certain. The mul-

timodal attention mechanism for video description provides

a means for introspection in the model, in the sense that the

weights across modalities that are used in generating each

word can be used to explore what features are useful in var-

ious contexts.

This work include expanding the feature set for video

description to include audio (in addition to image and spa-

tiotemporal features), and introducing a mechanism for se-

lectively attending to different modalities. In this paper, we

report the works in [6] and [7].

2. Attention-Based Multimodal Fusion

In [14], content vectors from VGG-16 (image features)

and C3D (spatiotemporal motion features) are combined

into one vector, which is used to predict the next word. This

is performed in the fusion layer, in which the following ac-

tivation vector is computed :

gi = tanh
(

W (λD)
s si−1 + di + b(λD)

s

)

, (1)

where

di = W
(λD)
c1 c1,i +W

(λD)
c2 c2,i, (2)

c1,i and c2,i are two feature vectors obtained using differ-

ent input modalities, si is the decoder state after word yi

has been output, and W
(λD)
s and b

(λD)
s are respectively the

weight matrix and bias for the decoder network λD.

12528



Figure 1 illustrates this approach, which we call this

approach Naı̈ve Fusion, in which multimodal feature vec-

tors are combined using one projection matrix Wc1 for the

first modality (input sequence x11, . . . , x1L), and a differ-

ent projection matrix Wc2 for the second modality (input

sequence x′

21, . . . , x2L′ ).

Our proposed method extends the attention mechanism

to multimodal fusion. We call it attentional fusion, or mul-

timodal attention. In our model, based on the current de-

coder state, the decoder network can selectively attend to

specific modalities of input (or specific feature types) to

predict the next word. Let K be the number of modalities,

i.e., the number of sequences of input feature vectors. Our

attention-based feature fusion is performed using

gi = tanh

(

W (λD)
s si−1 +

K
∑

k=1

βk,idk,i + b(λD)
s

)

, (3)

where

dk,i = W
(λD)
ck ck,i + b

(λD)
ck . (4)

The multimodal attention weights βk,i are obtained in a

similar way to the temporal attention mechanism:

βk,i =
exp(vk,i)

∑K

κ=1 exp(vκ,i)
, (5)

where

vk,i = w
⊺

B tanh(WBsi−1 + VBkck,i + bBk). (6)

Here WB and VBk are matrices, wB and bBk are vectors,

and vk,i is a scalar. Unlike in Naı̈ve multimodal fusion, the

multimodal attention weights can change according to the

decoder state and the feature vectors (shown in Figure 2).

This enables the decoder network to attend to a different

set of features and/or modalities when predicting each sub-

sequent word in the description. Naı̈ve fusion can be con-

sidered a special case of Attentional fusion, in which all

modality attention weights, βk,i, are constantly 1.

3. Experiments

3.1. Datasets

We evaluated our proposed feature fusion using

the MSVD (YouTube2Text) [3] and MSR-VTT [12].

MSVD (YouTube2Text) has 1,970 video clips with multiple

natural language descriptions. There are 80,839 sentences

in total, with about 41 annotated sentences per clip. Each

sentence on average contains about 8 words. The words

contained in all the sentences constitute a vocabulary of

13,010 unique lexical entries. The dataset is open-domain

and covers a wide range of topics including sports, animals,

and music. Following [3], we split the dataset into a training
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Figure 1. Naı̈ve Fusion of multimodal features.
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Figure 2. Our Attentional Fusion of multimodal features.

set of 1,200 video clips, a validation set of 100 clips, and a

test set of the remaining 670 clips.

MSR-VTT [12] consists of 10,000 web video clips with

41.2 hours and 200,000 clip-sentence pairs in total, cover-

ing a comprehensive list of 20 categories and a wide variety

of video content. Each clip was annotated with about 20

natural sentences. The dataset is split into training, valida-

tion, and testing sets of 65%, 5%, 30%, corresponding to

6,513, 497, and 2,990 clips respectively. However, because

the video clips are hosted on YouTube, some of the MSR-

VTT videos have been removed due to content or copyright

issues. When we downloaded the videos (February 2017),

approximately 12% were unavailable. Thus, we trained and

tested our approach using just the subset of the MSR-VTT

dataset that was available, which consists of 5,763, 419, and

2,616 clips for train, validation, and test respectively.

3.2. Video Processing

The image data are extracted from each video clip at 24

frames per second and rescaled to 224×224-pixel images.

In our experiments, we use a temporal stride of 16. For

extracting image features, we use a VGG-16 network [10]

2529



that was pretrained on the ImageNet dataset [8]. The output

of the fully-connected fc7 layer of a VGG-16 network [10]

pretrained on the Imagenet dataset is used for the image

features, which produces a sequence of 4096-dimensional

feature vectors. To model motion and short-term spatio-

temporal activity, we use the pretrained C3D [11] model.

The C3D network reads sequential frames in the video

and outputs a fixed-length feature vector every 16 frames.

We extracted activation vectors from fully-connected fc6-1

layer, which has 4096-dimensional features.

3.3. Audio Processing

The previous methods that used the

MSVD (YouTube2Text) dataset did not use audio fea-

tures [13, 9, 14]. In this paper, we additionally incorporate

audio features. Since the packaged MSVD (YouTube2Text)

dataset does not include the audio track from the YouTube

videos, we extracted the audio data via the original video

URLs. Although some of the videos were no longer

available on YouTube, we were able to collect audio data

for 1,649 video clips, which covers 84% of the dataset.

The 44 kHz-sampled audio data are downsampled to 16

kHz, and mel-frequency cepstral coefficients (MFCCs)

are extracted from each 50 ms time window with 25 ms

shift. The sequence of 13-dimensional MFCC features

are then concatenated into one vector for every group

of 20 consecutive frames, which results in a sequence

of 260-dimensional vectors. The MFCC features are

normalized so that the mean and variance vectors are 0 and

1 in the training set. The validation and test sets are also

adjusted using the original mean and variance vectors from

the training set. Unlike for the image features, we apply a

BLSTM encoder network to the MFCC features, which is

trained jointly with the decoder network. If audio data were

not available for a video clip, then we feed in a sequence of

dummy MFCC features (zero vectors).

We also extracted SoundNet features using a pre-trained

CNN [1]. We extracted 1024-dimensional feature vectors

(using fully connected layer conv7) from each video’s au-

dio track. Unlike for MFCC features, we do not apply a

BLSTM encoder for SoundNet features.

3.4. Experimental Setup

The caption generation model, i.e., the decoder network,

is trained to minimize the cross entropy criterion using the

training set. Image features and deep audio features (Sound-

Net ) are fed to the decoder network through one projection

layer of 512 units, while MFCC audio features are fed to a

BLSTM encoder (one projection layer of 512 units and bidi-

rectional LSTM layers of 512 cells) followed by the decoder

network. The decoder network has one LSTM layer with

512 cells. Each word is embedded to a 256-dimensional

vector when it is fed to the LSTM layer. In this video de-

scription task, we used L2 regularization for all experimen-

tal conditions and used RMSprop optimization.

4. Results and Discussion

Tables 1 and 2 show the evaluation results on the

MSVD (YouTube2Text) and MSR-VTT Subset. On each

dataset, we compare the performance of unimodal systems

to that of Attentional multimodal fusion systems. Unimodal

system results show that image-only and motion-only fea-

tures provide significantly better BLEU4 and METEOR

scores than audio-only features. Since video description

mainly relies on objects and background scene in the video,

it seems to be difficult to generate appropriate descriptions

only using audio features. Furthermore, some YouTube

videos include unrelated sound that was not in the origi-

nal scene, such as overdubbed music that was added to the

video in post-production, and some video clips have no au-

dio track. In such cases, it is almost impossible to generate

related sentences.

However, by performing Attentional fusion of audio fea-

tures (MFCC, SoundNet) along with the image and motion

features, both BLEU4 and METEOR scores improved over

unimodal systems and over multimoal systems based only

on image and motion features. This result demonstrates that

audio features are useful for video description when they are

used as additional information.

5. Conclusion

We proposed a new modality-dependent attention mech-

anism, which we call multimodal attention, for video de-

scription based on encoder-decoder sentence generation us-

ing recurrent neural networks (RNNs). In this approach,

the attention model selectively attends not just to specific

times, but to specific modalities of input such as image fea-

tures, spatiotemporal motion features, and audio features.

This approach provides a natural way to fuse multimodal

information for video description. In addition, Attentional

Fusion enables us to analyze the attention weights for each

word to examine how each modality contributes to each

word. We evaluated our attention-based multimodal fu-

sion method on the MSVD (YouTube2Text) and MSR-VTT.

achieving results that are competitive with current state-of-

the-art methods that employ temporal attention models.

Future work consists of incorporating a new state-of-the-

art audio features derived from the audio tracks of videos,

known as Audio Set VGGish [5], as well as a new state-

of-the-art video feature developed for action recognition,

I3D [2], into our framework for multimodal (and temporal)

attention.
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Table 1. Results of feature integration on MSVD (YouTube2Text) dataset

feature type Evaluation metric

Image Motion Audio BLEU4 METEOR

VGG-16 0.464 0.309

Unimodal C3D 0.464 0.304

systems MFCC 0.267 0.228

SoundNet 0.216 0.177

VGG-16 C3D 0.507 0.318

Attentional VGG-16 C3D MFCC 0.517 0.320

fusion VGG-16 C3D SoundNet 0.517 0.315

VGG-16 C3D MFCC SoundNet 0.519 0.312

Table 2. Results of feature integration on MSR-VTT data set

feature type Evaluation metric

Image Motion Audio BLEU4 METEOR

VGG-16 0.361 0.244

Single C3D 0.362 0.246

features MFCC 0.248 0.209

SoundNet 0.218 0.198

VGG-16 C3D 0.394 0.257

Attentional VGG-16 C3D MFCC 0.397 0.258

fusion VGG-16 C3D SoundNet 0.395 0.253

VGG-16 C3D MFCC & SoundNet 0.390 0.254
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