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Abstract

There is growing interest in speech models that can learn

from unlabelled speech paired with visual context. Here

we study how a visually grounded speech model, trained on

images of scenes paired with spoken captions, captures as-

pects of semantics. We use an external image tagger to gen-

erate soft text labels from images, which serve as targets for

a neural model that maps untranscribed speech to (seman-

tic) keyword labels. We introduce a newly collected data

set of human semantic relevance judgements and an asso-

ciated task, semantic speech retrieval, where the goal is to

search for spoken utterances that are semantically relevant

to a given text query. Without seeing any text, the model

trained on parallel speech and images achieves a precision

of almost 60% on its top ten semantic retrievals. Compared

to a supervised model trained on transcriptions, our model

matches human judgements better by some measures, espe-

cially in retrieving non-verbatim semantic matches.

1. Introduction

Current methods for automatic speech recognition

(ASR) require large amounts of transcribed speech data.

This has prompted work on models that, instead of using

exact transcriptions, can learn from weaker or noisy forms

of supervision. Our work here builds on a line of recent

studies [4, 7, 10, 16, 17] that use natural images of scenes

paired with untranscribed spoken descriptions. Neither the

spoken nor visual input is labelled. This setting is relevant

for low-resource speech processing [4], robotics [19], and

human language acquisition research [14, 15].

Most approaches map images and speech into some

common space, allowing images to be retrieved using

speech and vice versa. Although useful, such models can-

not predict (written) labels for the input speech. Here we

specifically analyse a model based on Kamper et al. [10],

which can make text label predictions. A trained visual tag-

ger is used to obtain soft text labels for each training image,

and these are used as targets for a neural network that maps

speech to keyword labels. Without observing any transcrip-

tions, the model of [10] was used as a keyword spotter,

predicting which utterances in a search collection contain

a given written keyword. It was observed that the model

often confuses semantically related words; these count as

errors in keyword spotting, but could be useful in semantic

search applications.

Our primary aim here is to perform an extensive analysis

to see what aspects of semantics are captured by the model

of [10]. To do so formally, we use the task of semantic

speech retrieval, where the aim is to retrieve all utterances

in a speech collection that are semantically relevant to a

given query keyword, irrespective of whether that keyword

occurs exactly in an utterance or not. E.g., given the query

‘children’, the goal is to return not only utterances contain-

ing the word ‘children’, but also utterances about children,

like ‘young boys playing soccer in the park’. There has been

some work on this and related tasks (see [11] for a complete

review), but typically in higher-resource settings and none

using visual supervision. Using a newly collected corpus

of speech data with soft semantic relevance judgements, we

present an extensive analysis of an updated version of the

model of [10], and compare it to several new alternative

models for the task of semantic speech retrieval.

2. The visually grounded speech model

Given a corpus of parallel images and spoken captions,

neither with textual labels, we train a spoken keyword pre-

diction model using a visual tagging system to produce soft

labels for the speech network. The overall approach is il-

lustrated in Figure 1. Training image I is paired with a spo-

ken caption X = x1,x2, . . . ,xT , where each frame xt is

an acoustic feature vector, e.g. Mel-frequency cepstral co-

efficients (MFCCs). We use an external vision system to

tag I with soft textual labels, giving ŷvis ∈ [0, 1]W where

ŷvis,w = Pγ(w|I) is the estimated probability of word w

being present in image I under vision model parameters

γ. These tagger outputs are then used as targets to train
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Figure 1. For training, an external visual tagger produces soft tags

for image I , which serve as targets for the speech network fed with

spoken caption X . In testing, the speech network is given unseen

speech (no image) and the output f(X) is used for semantic re-

trieval of a textual keyword.

the speech network f(X) (Figure 1, right). This model

(parameters θ) consists of a convolutional neural network

(CNN) over the speech X with a final sigmoidal layer so

that f(X) ∈ [0, 1]W , where fw(X) = Pθ(w|X) is inter-

preted as the posterior probability of tag w given the spoken

utterance. We train the speech model using the summed

cross-entropy loss:

−

W∑

w=1

{ŷvis,w log fw(X) + (1− ŷvis,w) log [1− fw(X)]}

The resulting network f(X) can then predict which key-

words are present for a given utterance X , disregarding the

order, quantity, or locations of the keywords in the input

speech. The possible keywords (the vocabulary) are im-

plicitly specified by the visual tagger. No transcriptions are

used during training. When applying the trained f(X) for

keyword spotting or semantic retrieval, test speech alone is

used without any visual input.

Our approach requires a visual tagging system [2, 3, 5]

that predicts an unordered set of words that describe the

scene (Figure 1, left). We train our visual tagger on com-

bined data from the Flickr30k [22] and MSCOCO [12] data

sets, which consist of images each with five written cap-

tions. For each image, the training labels consist of a bag-

of-words vector yvis ∈ [0, 1]W containing indicators for the

W = 1000 most common content words in the image cap-

tions. None of the images used here occur in the parallel

image-speech data used in our experiments.

3. Semantic speech retrieval data set

We consider the task of semantic speech retrieval. In-

stead of matching keywords exactly, as is typical in key-

word spotting [18, 20], the aim is to retrieve all utterances

that are semantically relevant, irrespective of whether the

keyword occurs in the utterance or not. E.g., for the query

‘sidewalk’, a model should return not only utterances con-

taining the word exactly, but also speech like ‘an old couple

window-shopping on a Paris street.’

We collect a new data set of human semantic judgements

by extending the corpus of [6], which consists of parallel

images and spoken captions. The data is transcribed, but

not semantically labelled. For a subset of the speech in the

corpus, we use Amazon Mechanical Turk (AMT) to col-

lect semantic labels from human annotators. The annotators

choose which of a set of keywords could be used to search

for a given utterance describing a scene. Five workers an-

notate each utterance.

To evaluate a semantic keyword retrieval model against

the human annotations, one option is to combine the human

judgements into a single hard label based on the majority

decision. On the other hand, we found there was a wide

range of opinions among the human annotators, indicating

that semantic relevance may be inherently “soft”. This mo-

tivates evaluation by comparing against the proportion of

annotators that agree with a given label. In our experiments

we consider both hard and soft options.

4. Experimental setup and evaluation

We train our model on the corpus of parallel images and

spoken captions of [6], containing 8000 images with five

spoken captions each. Audio comprises around 37 hours

of active speech. We parameterise the speech audio as

13 MFCCs with first and second order derivatives, giving

39-dimensional input vectors. Training images are passed

through the visual tagger, producing soft targets ŷvis for

training the keyword prediction model f(X) on the unla-

belled speech, as shown in Figure 1. We refer to the result-

ing model as VISIONSPEECHCNN. The structure and train-

ing procedure used for VISIONSPEECHCNN is very similar

to that of [10] (see that paper for architectural details).

4.1. Evaluation

To use VISIONSPEECHCNN for semantic retrieval, we use

its output fw(X) ∈ [0, 1] as a score for how relevant an

utterance X is given the keyword w. The baseline and fully

supervised models below similarly predict a relevance score

for each utterance given a specific keyword.

We compare a model’s predictions to semantic labels ob-

tained from human annotators using several metrics. To ob-

tain a hard labelling from a model, we set a threshold α, and

label all keywords for which fw(X) > α as relevant. By
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Table 1. Keyword spotting and semantic speech retrieval performance for VISIONSPEECHCNN (row 3), compared against the baseline

(rows 1 and 2) and fully supervised (rows 4 and 5) models. Boldface indicates both the top-scoring models that does not use transcriptions

(rows 1 to 3) as well as the best supervised model (rows 4 and 5) for each of the metrics.

Exact keyword spotting (%) Semantic speech retrieval (%)

Model P@10 P@N EER AP P@10 P@N EER AP Spear. ρ

Baseline models:

1. TEXTPRIOR 2.8 3.4 50.0 8.7 6.1 7.0 50.0 11.4 10.8

2. VISIONTAGPRIOR 2.8 3.4 50.0 7.0 6.1 7.0 50.0 13.6 12.5

3. VISIONSPEECHCNN 38.5 30.8 19.6 26.9 58.8 39.7 23.9 39.4 32.4

Fully supervised models:

4. SUPERVISEDBOWCNN 84.9 74.7 5.6 87.3 88.1 50.3 23.8 51.3 21.9

5. TEXTWUP 65.4 67.3 2.6 75.2 80.3 63.0 19.4 60.9 25.2

comparing this to the ground truth semantic labels (accord-

ing to majority annotator agreement), precision and recall

can be calculated; we report average precision (AP), the

area under the precision-recall curve as α is varied. The soft

scores fw(X) can also be compared directly to the number

of annotators that selected the keyword w for utterance X:

we use Spearman’s ρ to measure the correlation between

the rankings of these two variables, as is common in work

on word similarity [1, 9]. The remaining metrics are stan-

dard in (exact) keyword spotting, based on how a model

ranks utterances in the test data from most to least relevant

for each keyword [8, 23]: precision at ten (P@10) is the

average precision of the ten highest-scoring proposals; pre-

cision at N (P@N ) is the average precision of the top N

proposals, with N the number of true occurrences of the

keyword; and equal error rate (EER) is the average error

rate at which false acceptance and rejection rates are equal.

4.2. Baselines and fully supervised models

TEXTPRIOR uses the unigram probability of each key-

word estimated from the transcriptions of the training por-

tion of the spoken captions corpus. This will indicate

how much better our model does than simply hypothesising

common words. Similarly, VISIONTAGPRIOR is obtained by

passing all training images through the trained visual tagger

and then taking the average over all images.

The SUPERVISEDBOWCNN fully supervised model uses

transcriptions to obtain hard bag-of-words (BoW) supervi-

sion: ybow targets are constructed for the 1000 most com-

mon content words in the transcriptions of the training ut-

terances (ignoring stop words).

Suppose we had a perfect ASR system, converting input

speech to text without errors. How well could we do at se-

mantic speech retrieval using this error-free text? To answer

how this cascaded approach would do in an ideal setting, we

consider a text-based semantic retrieval method using tran-

scriptions of the speech. WuP similarity, named after Wu

and Palmer [21], scores the semantic relatedness between

two words according to the path length between them in

the WordNet lexical hierarchy [13]. Our TEXTWUP upper-

bound model is based on the closest WuP match between a

keyword and each of the words in a transcribed utterance.

5. Experimental results and analysis

Exact and semantic keyword retrieval performance for

VISIONSPEECHCNN and all the baseline and fully super-

vised models are shown in Table 1. VISIONSPEECHCNN out-

performs the baseline models across all metrics, indicating

that it does more than simply outputting common labels.

The baseline models and VISIONSPEECHCNN all per-

form better at semantic than at exact retrieval. In contrast,

the transcription-based supervised models (rows 4 and 5)

perform better on P@10, but worse on all other semantic

search metrics. P@10 only measures precision of the high-

est ranked utterances, while the other metrics combine pre-

cision and recall; thus, the transcription-based supervised

models struggle to retrieve semantic matches compared to

exact matches, while VISIONSPEECHCNN recall more se-

mantic matches. In terms of absolute performance, the

transcription-based models still perform better at semantic

speech retrieval on the metrics based on hard ground truth

labels. However, for Spearman’s ρ, which gives credit even

if a prediction does not match the majority of annotations,

VISIONSPEECHCNN outperforms all other models. Visual

context is clearly beneficial in matching soft human ratings.

Despite the benefit of visual supervision, SUPERVISED-

BOWCNN still performs better on semantic speech retrieval

measured against hard labels. We analysed these results and

found that VISIONSPEECHCNN actually performs better on

non-verbatim semantic matches. On the metrics that use

hard ground-truth labels, TEXTWUP performs best. How-

ever, VISIONSPEECHCNN again performs better on Spear-

man’s ρ, which measures the ranking correlation with anno-

tator counts. As noted, the visually trained models are par-
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ticularly strong in matching non-exact semantic keywords.

6. Conclusion

We investigated how a model that learns from parallel

images and unlabelled speech captures aspects of semantics

in speech. We collected a new data set for a semantic speech

retrieval task, where the aim is to retrieve utterances that

are semantically relevant given a written query keyword.

Without seeing any parallel speech and text, the visually

grounded model achieves a semantic P@10 of almost 60%.

Although a model trained on transcriptions is superior on

some metrics, the vision-speech model retrieves more non-

verbatim semantic matches and is a better predictor of the

actual soft human ratings.
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