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Abstract

The remarkable technological advance in well-equipped
wearable devices is pushing an increasing production of
long first-person videos. However, since most of these
videos have long and tedious parts, they are forgotten or
never seen. Despite a large number of techniques proposed
to fast-forward these videos by highlighting relevant mo-
ments, most of them are image based only. Most of these
techniques disregard other relevant sensors present in the
current devices such as high-definition microphones. In this
work, we propose a new approach to fast-forward videos us-
ing psychoacoustic metrics extracted from the soundtrack.
These metrics can be used to estimate the annoyance of
a segment allowing our method to emphasize moments of
sound pleasantness. The efficiency of our method is demon-
strated through qualitative results and quantitative results
as far as of speed-up and instability are concerned.

1. Introduction

Thanks to the recent technology advances, a flood of
low-cost wearable cameras equipped with high-quality sen-
sors is reaching the consumers. The low-cost of these cam-
eras and the large number of sharing and storing websites
are popularizing the use of these well-equipped devices.
People are increasingly logging their daily routines, gen-
erating massive amounts of egocentric videos rich in vi-
sual and sound information. However, since most parts of
the egocentric videos are tedious to watch, long egocentric
videos are doomed to be forgotten.

Video Summarization and Semantic-aware Hyperlapse
are two popular approaches for reducing the size of ego-
centric videos. Although Video Summarization techniques
can find the meaningful moments of a video, they return
only disconnected fragments of the whole video [12, 2, 6].
Semantic-aware Hyperlapse works [4, 8, 10, 11, 9], on the
other hand, can identify relevant moments while preserving
the timeline of the video. Despite the remarkable advances

on video summarization and hyperlapse works, they are still
restricted to visual information. Virtually all hyperlapse and
summarization methods disregard an important piece of in-
formation provided by additional sensors like microphones,
the sound. The sound is informative and may provide im-
portant clues of the context of a scene and be used to assign
importance to segments of a video based on metrics like
loudness and annoyance.

In this work, we propose a novel methodology that com-
bines the psychoacoustic metrics with visual features to
fast-forward first-person videos. By also considering the
sound, we can measure the relevance of a frame using the
psychoacoustic annoyance metrics and avoid selecting un-
pleasure moments like a segment with a crowd or a noisy
street. We present quantitative and qualitative results that
show the ability of our method in fast-forwarding a video
using the sound and images.

2. Related Work

We can roughly divide the methods of selecting mean-
ingful moments in long-duration videos into two categories:
Video Summarization and Semantic-Aware Hyperlapse.

Video Summarization techniques try to identify the most
informative segments of a video and create a compact sum-
mary of these moments. There are many ways to classify
a segment as informative, e.g., user’s preference [12], ab-
normal behaviors [2], and story-telling [6]. For instance,
Lee et al. [5] propose a method to summarize a video us-
ing both face detection and speech recognition. The authors
start by identifying regions in the images containing human
faces. Then, they generated coefficients based on the face
regions and used these coefficients as features in a classifi-
cation step. After extracting the audio from the speaker in
the video, the face detection and speaker verification results
are used to summarize the video.

Although video summarization techniques achieved re-
markable results creating summaries, they do no generate
a pleasant experience for the user, once they miss the tem-
poral continuity. Semantic-aware Hyperlapse techniques,
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Figure 1. Diagram illustrating the three main steps of methodology. After segmenting the soundtrack of the input video into slices of size
Ak, we compute the PA metric (green curve). The PA value is a semantic score assigned to each segment. The semantic score is used to
create a relevant profile of the video. This profile is used in the video compositing step to select the relevant frames.

like the works of Silva et al. [10, 9, 11], Ramos et al. [8]
and Lai et al. [4], preserve the temporal continuity and
the smoothness of a video while emphasizing relevant seg-
ments. However, these Semantic-aware Hyperlapse tech-
niques rely only on visual information, they overlook the
information provided by other sensors such as the sound.

Several recent studies have been trying to combine sound
and sight. A recent and representative approach is the work
of Owens et al. [7]. The authors propose a self-supervised
way to learn a multi-sensory representation that jointly
models audio and visual information from a video. The
learned representation is then used to predict sound source
localization, audio-visual action recognition, and on/off-
screen audio separation. Arandjelovic et al. [1] present a
system that can learn the semantic information of a scene
by looking and listening to unlabelled videos.

Similar to the works of Owens et al. and Arandjelovic et
al., in this work we combine sound and visual data. We
present an approach that uses psychoacoustic metrics ex-
tracted from the sound of a scene in conjunction with visual
information to fast-forward first-person videos.

3. Methodology

Our fast-forward method consists of three primary steps,
outlined in Figure 1: data extraction, the psychoacoustic
annoyance estimation and video compositing.

Data Extraction. In this step, we extract the sound-
track from a video of length n and segment it into slices
of lower length Ak resulting in the following set S =
{s1, $2, 83, ..., Sm }, Where s; is the i-th slice of the sound-
track and m = 1%

As stated, our methodology combines acoustical and vi-
sual information. Thus, after collecting the sound data,

we compute the instability, appearance, and velocity be-
tween frames. The instability metric is estimated by the
average distance Focus of Expansion (FOE) to the center
of the frame. To estimate appearance, we compute the
Earth Mover’s Distance between the color histogram of the
frames. At last, the velocity factor is given by the differ-
ence between the average magnitude of the optical flows of
the frames along with the optical flows of the whole video.
All these metrics and the psychoacoustic annoyance metric
(computed from the sound) are joined in a linear combina-
tion that is used in the video compositing step.

Psychoacoustic Annoyance estimation. In the context of
first-person videos, auditory stimulus is a relevant factor for
perceiving the environment. Zwicker’s metric [13] is a pop-
ular method for estimating the sound impression for a hu-
man listener. It is based on four psychoacoustic measure-
ments:

o Fluctuation and Roughness: A complex environment
has multiple frequencies sounds that constructively
and destructively interfere with each other creating
modulation. Fluctuation and roughness are two mea-
surements of the modulation of a signal over the time.
The fluctuation was designed to work with 20 up to
modulations per second; roughness describes sounds
with modulations range from 20 to 300 times per sec-
ond. A modulated signal is considerably more un-
pleasant when having a higher roughness and fluctua-
tion. In this work, we used the Roughness metric pro-
posed by Daniel and Weber [3];

e Loudness and Sharpness: While loudness takes into
account the distributions of critical bands in the hu-
man hearing, sharpness is a function of the spectral
composition. The sharpness metric is estimated by a
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weighted sum of specific loudness levels in different
bands. A sound with high sharpness is more annoying.
The loudness is a psychological phenomenon. Differ-
ent from a sound level that is a physical measurement,
the loudness was developed based on human subject
studies in persons with normal hearing. People in these
studies listened to a tone at frequency f Hz and a par-
ticular dB level, a second tone was then played at a dif-
ferent frequency. The level of this second tone would
be altered until it sounded equally as loud as the f Hz
tone.

Zwicker proposes to compute the psychoacoustic annoy-
ance (PA) as a function of sharpness (S), loudness (N), fluc-
tuation (F), and roughness (R) as:

PA = Ny <1+\/w§+w%s), (1)

wg =1[S > 0] x (1.75 — S)log(N5 + 10), (2)
wrs = 2.78 x N5 °* x (0.4F 4 0.6R), (3)

where N5 is the 95th percentile of loudness and 1[X] is the
indicator function, having the value 1 if X is true and the
value 0 otherwise.

After computing the median values of Roughness, Fluc-
tuation, Sharpness and Loudness for each slice s;, we esti-
mate the PA value. We used the shape function f(PA) =
Xe A4 to compute the semantic score since the video
compositing step relates high values of the score with se-
mantic information. In our case, high PA values represent
irrelevant information. The parameter A controls the decay
of the semantic score when the PA increases. In our experi-
ments, we used A = 5.

Video compositing. In this step, our methodology re-
moves frames from the original video using the semantic
curve. Firstly, for each frame of the video, we assigned a se-
mantic score concerning the sound segments. Then, accord-
ing to the scores of each frame, the video is segmented into
semantic and non-semantic parts, where a semantic segment
has low PA values. After the segmentation, we compute for
each segment a different speed-up proportional to the se-
mantic level of the segment. Thus, segments with higher
semantic levels receive a lower speed-up whilst respecting
the overall required speed-up.

To select which frames to remove, we use the Multi-
Importance Fast-Forward (MIFF) method, the state-of-the-
art semantic-aware hyperlapse method [9]. The MIFF
method is based on a directed graph, where each node rep-
resent the frames of the video and edges representing the
transition between pair frames. A weight is attributed to
each edge of the graph according to metrics as shakiness,
visual appearance, the speed of motion and semantics (in
our case, the PA of the segment that the frame is part of).

Speedup
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Figure 2. A qualitative analysis of the speed-up rates and PA val-
ues. On the left side, a frame from a segment with high PA value.
In the middle a frame from a segment with a low PA and on the
right a frame from a segment with medium PA value.

Then, the method generates the shortest path of each graph
and concatenates these paths. In the last step, the MIFF
method stabilizes the concatenate path generating a more
visually pleasant fast-forward video.

4. Experiments

Experimental setup. To evaluate our method we used the
Dataset of Multimodal Semantic Egocentric Videos (DoM-
SEV) proposed by Silva et al. [11]. This dataset is com-
posed of 80 hours egocentric videos. It provides videos,
sound, IMU measurements, GPS, and depth. Each video
has annotations specifying the ambient where the video
was recorded (indoor, outdoor), the activity performed, and
recorder attention/interaction during the video.

We manually selected 11 segments from videos in the
DoMSEV dataset with a rich diversity of sound and visual
events (e.g., crowded places and quiet streets and parks).
For each segment, we split its soundtrack into segments of
3 seconds. Regarding the semantic hyperlapse creation, all
parameters were set with the same values used by the au-
thors in their experiments [9].

Evaluation Metrics and baseline. We used two metrics
to evaluate the results of the experiments: the speed-up
rate and the instability index [10]. The Speed-up rate de-
scribes the ratio of frames between the input and the output
video. The instability index measures the amount of insta-
bility generated by the method in the resultant video.

We pit our method against the MIFF method et al. [9],
where each frame receives a semantic score according to
the number of detected faces and pedestrians on the image.

Results. Figure 2 shows the visual results of our method.
The blue curve represents the semantic score, and the pink
curve shows the speed-up value. We highlighted three
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Table 1. Speed-up and instability results for the 11 videos seg-
ments used. We used a 10x speed-up factor.

Speed-up!  Instability>
Videos Ours MIFF Ours MIFF

Mean PA?
QOurs MIFF

Academic Life 03 10.0 10.0 394 346 205 215

Attraction_01 100 100 375 375 209 218
Daily_Life_01 100 158 49.0 500 214 220
Party_01 100 100 29.6 29.0 28.1 283

Recreation 01 10.0 10.0 41.0 37.8 13.8 15.1
Recreation_02 100 10.0 450 40.1 235 247
Recreation_04 10.0 10.0 389 333 258 274
Recreation_06 100 123 38.6 424 220 229
Recreation_08 100 102 279 278 242 248

Shopping_01 10.0 102 415 371 22,0 233
Tourism_02 100 124 398 40.0 223 232
Mean 100 11.0 389 372 222 232

1 Better closer to 10. 2 Lower is better.

frames on the figure representing different segments of the
video with different PA values. The first frame shows a seg-
ment with a high PA that received a high speed-up. We can
see several sources of acoustic annoyance in the image as
a soundbox near to the recorder and a crowd. The second
frame is related to a low value of psychoacoustic annoyance
and happens when the recorder goes away from the crowd
and the music playing in the background. This segment re-
ceived the lowest speed-up in the video. In the third part,
the record decides to go back to the crowd. Thus, we have a
medium value of PA, since loudness and sharpness metrics
increase when close to the crowd and music.

Table 1 presents the quantitative results. It contains
the Instability Index [10], speed-up, and the average PA
achieved by each method in the 11 segments of video
used in the experiments. Regarding speed-up, our method
achieved the desired factor (10x) in most of the videos. It
presented a better result when compared to MIFF method.
MIFF performs slightly better than our method regarding
instability. One reason may be the large number of speed-up
thresholds representing different levels of semantic impor-
tance created because of granularity of the semantic infor-
mation extracted by our method. For this reason, the value
of the speed-up increases, generating a higher discrepancy
between frames of the fast-forward version of the videos.
When considering the average PA of the final video, our
method produced fast-forwarded videos with lower mean
PA than the MIFF method.

5. Conclusion

In this paper, we proposed a new approach to extract se-
mantic from the soundtrack of egocentric videos. This se-
mantic is combined with visual features for fast-forwarding

the input video creating a smaller and stabilized new ver-
sion. We estimate the annoying sound moments from the
video applying psychoacoustic metrics. In our results, we
show that even though we lost some stability when com-
pared with state-of-the-art methods, our method can fast-
forward a video using the sound information and prevent
annoying acoustic segments in the final video.

Acknowledgments. The authors would like to thank
CAPES, CNPq, FAPEMIG, Petrobras, and NSF VeHICaL
project (#1545126) for funding this work.

References

[1] R. Arandjelovic and A. Zisserman. Look, listen and learn. In
ICCV, pages 609-617. IEEE, 2017. 2
[2] M. Cote, F. Jean, A. B. Albu, and D. Capson. Video summa-
rization for remote invigilation of online exams. In WACV,
2016. 1
[3] P.Daniel and R. Weber. Psychoacoustical roughness: Imple-
mentation of an optimized model. Acta Acustica united with
Acustica, 83(1):113-123, 1997. 2
[4] W.-S. Lai, Y. Huang, N. Joshi, C. Buehler, M.-H. Yang,
and S. B. Kang. Semantic-driven generation of hyperlapse
from 360 video. IEEE Trans. on Visualization and Computer
Graphics, page 99, 2017. 1,2
[5]1 Y. S. Lee, C. Y. Hsu, P. C. Lin, C. Y. Chen, and J. C. Wang.
Video summarization based on face recognition and speaker
verification. In ICIEA, pages 1821-1824, June 2015. 1
[6] Z.Lu and K. Grauman. Story-driven summarization for ego-
centric video. In CVPR, pages 2714-2721. IEEE, 2013. 1
[71 A. Owens and A. A. Efros. Audio-Visual Scene Analysis
with Self-Supervised Multisensory Features. ArXiv e-prints,
Apr. 2018. 2
[8] W. L.S. Ramos, M. M. Silva, M. F. M. Campos, and E. R.
Nascimento. Fast-forward video based on semantic extrac-
tion. In ICIP, pages 3334-3338, 2016. 1, 2
[9] M. M. Silva, W. L. S. Ramos, F. C. Chamone, J. P. K. Fer-
reira, M. F. M. Campos, and E. R. Nascimento. Making a
long story short: A multi-importance fast-forwarding ego-
centric videos with the emphasis on relevant objects. Journal
of Visual Comm. and Image Repr., 53:55-64,2018. 1,2, 3
[10] M. M. Silva, W.L. S. Ramos, J. P. K. Ferreira, M. F. M. Cam-
pos, and E. R. Nascimento. Towards semantic fast-forward
and stabilized egocentric videos. In Int. Workshop on Ego-
centric Perception, Interaction and Computing at ECCV,
pages 557-571, 2016. 1,2, 3,4
[11] M. M. Silva, W. L. S. Ramos, J. P. K. Ferreira, F. C. Cha-
mone, M. F. M. Campos, and E. R. Nascimento. A weighted
sparse sampling and smoothing frame transition approach
for semantic fast-forward first-person videos. In CVPR, Jun.
2018. to appear. 1, 2,3
[12] T. Yao, T. Mei, and Y. Rui. Highlight detection with pairwise
deep ranking for first-person video summarization. In CVPR,
pages 982-990, 2016. 1
[13] E.Zwicker and H. Fastl. Psychoacoustics: Facts and models,
volume 22. Springer Science & Business Media, 2013. 2

2507



