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Abstract

We explore the problem of mapping soundscapes, that is,

predicting the types of sounds that are likely to be heard at a

given geographic location. Using a novel dataset, which in-

cludes geo-tagged audio and overhead imagery, we develop

an approach for constructing an aural atlas, which captures

the geospatial distribution of soundscapes. We build on pre-

vious work relating sound to ground-level imagery but in-

corporate overhead imagery to overcome the limitations of

sparsely distributed geo-tagged audio. In the end, all that

we require to construct an aural atlas is overhead imagery

of the region of interest. We show examples of aural atlases

at multiple spatial scales, from block-level to country.

1. Introduction

The visual appearance of a place and its soundscape, the

totality of sounds one hears in a location, are inextricably

linked. For example, in an urban environment, such as on a

busy street corner, you can expect to hear honking, people

talking, and, potentially, a siren. In contrast, in a rural envi-

ronment, such as a forest, you could expect to hear animals

chattering, leaves rustling, and perhaps the sound of rush-

ing water. Given a photograph, humans have the ability to

imagine the sounds they might hear in that moment.

Studies have shown that environmental noise affects so-

cial behavior [8], among other things. Basner et al. [4] sum-

marize research related to noise exposure, including audi-

tory and non-auditory health effects such as reduced cogni-

tive performance and sleep disturbance. Models capturing

the relationship between sound and specific locations could

be used, for example, to help people decide where to live,

or where to place sound barriers.

The objective of our work is to develop methods for un-

derstanding the types of sounds that could be heard at a spe-

cific geographic location. Several recent works have taken

advantage of the synergy between sound and visual appear-

ance to learn better representations. Aytar et al. [3] lever-

Figure 1. We propose a multimodal approach for relating overhead

image appearance with sounds in order to map soundscapes. (left)

Overhead image; (right) Similar ground-level images and sounds

output by our method.

age two million unlabeled videos to learn a state-of-the-art

sound representation for acoustic classification. Owens et

al. [6] incorporate ambient sounds as a supervisory signal

in order to learn visual representations. Most similar to our

work, Aiello et al. [2] proposed a method for constructing

sound maps by using sound-related image tags on a large

set of geo-referenced ground-level imagery. This method

requires high-quality image tags, which aren’t always avail-

able, and performs poorly when ground-level imagery is

sparsely distributed, such as away from major tourist land-

marks.

We take a different approach and explore the problem

of generating a location-dependent sound model. Our ap-

proach builds upon recent advances in both ground-level

and overhead image understanding. A key element of our

approach is that we learn a joint feature representation be-

tween sound, ground-level, and overhead image appearance

(Fig. 1). A unique advantage of our approach is that it en-

ables us to generate a location-dependent sound map (or an

aural atlas) using only overhead imagery, which is available

at most locations.
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Figure 2. An overview of our network architecture.

2. Cross-View Aural Mapping

The objective of our work is to construct a map of the au-

ral environment, which we represent as a conditional proba-

bility distribution, P (s|l), where l is the geographic location

and s represents the sound. In this work, we explore a novel

approach, conditioning our aural map on the overhead im-

agery of a location, P (s|I(l)), where I(l) is an overhead

image of location l. This is a promising approach because

many visual features that relate sound to location are visi-

ble from above. Furthermore, high-resolution overhead im-

agery is available across the globe and is updated frequently.

We further factorize the distribution as:

P (s|I(l)) =
∑

c

P (s|c)P (c|I(l)),

where c represents a cluster of related sounds.

Our approach consists of three phases: learning a suit-

able feature space, clustering sounds, and learning to pre-

dict a distribution over sound clusters from the overhead

imagery using a convolutional neural network.

2.1. Cross­View Sound Dataset

To support our work, we constructed a dataset of geo-

tagged sounds and co-located overhead images, which we

refer to as the Cross-View Sound (CVS) dataset. We col-

lected 23,308 geo-tagged audio files from FreeSound1, a

popular crowd-sourced repository. For each audio file, we

downloaded the corresponding overhead image from Bing

Maps (scale 0.60 m/pixel). Analysis of the geolocation as-

sociated with the sound files reveals that the sounds are

recorded from around the world, with more sounds recorded

in Europe and U.S than other parts of the world. Further,

examining the tags associated with the sound files shows

that the sounds cover a wide range of human and natural

1https://freesound.org

aspects. For our experiments, we filtered out sounds that

were shorter than 2 seconds and sounds for which there was

no overhead imagery available at the selected scale. This

results in 15,773 sounds and their corresponding overhead

images.

2.2. Learning a Shared Feature Space

In this phase, our goal is to learn a shared feature repre-

sentation that is suitable for our task. Specifically, we want

a feature representation that can jointly describe audio and

overhead imagery. To do this, we propose a convolutional

neural network (CNN) architecture that relates sounds with

co-located overhead images. Our approach builds on recent

work that targets these two subproblems individually. An

overview of our architecture is shown in Fig. 2.

To extract audio features, we use SoundNet [3], a deep

convolutional architecture for sound recognition, trained

by transferring knowledge from existing visual recogni-

tion networks. To train SoundNet, images from unlabeled

videos are passed through the Places network [10] (while

different Places models are available, we always refer to the

one used to train SoundNet), and the output distributions are

used as the target label for a network that takes as input the

corresponding audio file. Given an audio file, the output of

SoundNet is a distribution over 401 visual scene categories.

The resulting network performs remarkably well, despite

being trained without any manually annotated audio files.

To learn the overhead image feature representation, we

use a multimodal training approach similar to SoundNet

and Workman et al. [9]. Specifically, we learn to predict

a distribution over ground-level scene categories from over-

head imagery. Each ground-level image is labeled using

the Places network [10], generating a distribution over 401
scene categories. We then train a VGG-16 [7] network to

predict these distributions using only the overhead image,

minimizing the KL-divergence. We trained the network on

the CVUSA dataset [9], which contains approximately 1.5

million geo-tagged pairs of overhead and ground-level im-

ages. The network is initialized to the weights of the Places

network, and optimized using Adam with learning rate of

0.001 for 5 epochs.

This process results in a shared feature representation

that allows the direct comparison of three different modal-

ities: audio, ground-level imagery, and overhead imagery.

We could, for example, use an image retrieval approach to

identify sounds related to an overhead image. The problem

with this approach is that the sounds close to the overhead

image in the feature space will all be similar, and therefore

potentially not representative of the diversity of sounds one

could hear in a particular area. To overcome this, we intro-

duce a clustering approach to group sounds, which we then

use to map soundscapes.
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Figure 3. The model architecture for predicting a distribution over

sound clusters from an overhead image.

2.3. Clustering Sounds

We group the sounds into a discrete set of clusters using

hierarchical clustering [5]. For a given image-sound pair,

we extract the predicted distributions over the 401 scene

categories for each modality and concatenate them to form

an 802-dimensional vector. Then, this concatenated repre-

sentations is used as input for clustering. The result of this

process is a set of clusters C = c1, . . . , ck. Finally, we filter

out small clusters (less than 500 sounds), leaving 10 clus-

ters. In the following section, we describe our process for

estimating the conditional distribution over sound clusters

for a given location.

2.4. Predicting Sound Clusters from Overhead Im­
agery

We assign each sound to a unique cluster and treat the

cluster assignment, ci, as the label of a given location, li.

For each location, we obtain the co-located overhead im-

age, I(li), and train a CNN to predict the sound cluster, ci,

from the image. We fine-tune the network described in Sec-

tion 2.2, adding a fully connected layer at the end with ten

outputs (Fig. 3). We minimize the cross-entropy loss us-

ing Adam with a learning rate of 0.001 for 20 epochs. We

now have all of the components of our model and can use

P (c|I(l)) to visualize soundscapes.

3. Experiments

We evaluated our approach both quantitatively and qual-

itatively using a TensorFlow [1] implementation. We begin

with an analysis of the shared feature space.

3.1. How good is our feature space?

For a given overhead image, we extract the output distri-

bution over scene categories and identify the closest sounds

in CVS and the closest ground-level images in CVUSA, us-

ing KL-divergence. Several qualitative examples are shown

in Fig. 1. The leftmost column shows the overhead image

and the right columns show the top three ground-level im-

ages above the top three sounds. For example, in the bottom

row, the overhead image is of a lake, and the three clos-

est ground-level images appear to be captured on or near a

lake. The results are similar when listening to the closest

sounds; in Fig. 1 (top) the most similar sound contains peo-

ple cheering. The predicted sounds, dataset, and more re-
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Figure 4. Given an overhead image (top), our model outputs a dis-

tribution over sound clusters (bottom).

Table 1. Quantitative performance of different networks.

Network Precision Recall F1-score

sound 0.24 0.19 0.19

joint 0.51 0.34 0.36

sults will be made available online at http://cs.uky.

edu/˜salem/audio-mapping/.

3.2. What is the best way to cluster?

We compare our approach for clustering the sounds

against a baseline approach using only sound features. As

described in Section 2.4, we train two models on the two

different clustering approaches. For evaluation, we split the

CVS dataset into 90% training and 10% testing. The result-

ing test set contains 1,578 sounds and corresponding over-

head images.

For a given overhead image, each model outputs a prob-

ability distribution over the sound clusters. The precision,

recall and F1-score for these two models are shown in Ta-

ble 1. The model that was trained on clusters generated

from joint features achieved better performance compared

to the model trained on sound features. The superior per-

formance can be attributed to the fact that the clustering ap-

proach based on joint features takes into account the seman-

tic relation between overhead images and the corresponding

sounds. Fig. 4 shows the output distributions over the 10
clusters for two test images.

3.3. Visualizing An Aural Atlas

Using the trained CNN model to predict a distribution

over sound clusters from an overhead image enables us to

construct sound maps at various spatial scales: block level,

city level, and country level.

Block level: Consider the overhead image on the left of

Fig. 5 which contains beach, water, roads, and buildings.

Clearly the sounds at these places would be different. For
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Figure 5. Block-level audio mapping: (left) An overhead image of

a small geographical region on Miami beach. (right) A per-pixel

labeling of sound clusters.

Figure 6. City-level audio mapping: (left) An overhead image cov-

ering New York City. (right) A per-pixel labeling of sound clus-

ters.

every pixel in the image, we downloaded the correspond-

ing overhead image and used our network (Section 2.4) to

predict the distribution over sound clusters. We show the

results of our approach in Fig. 5 (right), as a per-pixel label-

ing where the color represents the most likely sound clus-

ter (e.g., blue = water-related sounds and orange = traffic

sounds). The color coding is the same for the next two spa-

tial scales.

City level: Here we apply the same technique to a larger

geographic area. Fig. 6 shows the aural atlas for a portion

of New York City. Note how the majority of the urban areas

are colored orange and the water areas are dark blue.

Country level: Finally, we demonstrate the results of

our method at the country level. We used 500,000 overhead

images randomly sampled from the CVUSA dataset and ex-

tracted the sound cluster prediction with our trained model.

Fig. 7 shows the results. Note the orange regions covering

the major metropolitan areas.

4. Conclusion

We created a location-dependent model of sound condi-

tioned on overhead imagery. We showed how our model

could be used for sampling a set of sounds that you would

hear at a given location and to generate maps of sound-

scapes at varying spatial scales. To the best of our knowl-

edge, our work is the first to model the relationship between

overhead imagery and sound. In the future, we will extend

our work to include time, as the sounds you might hear at a

Figure 7. Country-level audio mapping: visualizing the sound

clusters over USA. Gaps (white) are regions where the CVUSA

dataset does not have imagery.

location are highly time dependent.
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