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Abstract

We explore the problem of mapping soundscapes, that is,
predicting the types of sounds that are likely to be heard at a
given geographic location. Using a novel dataset, which in-
cludes geo-tagged audio and overhead imagery, we develop
an approach for constructing an aural atlas, which captures
the geospatial distribution of soundscapes. We build on pre-
vious work relating sound to ground-level imagery but in-
corporate overhead imagery to overcome the limitations of
sparsely distributed geo-tagged audio. In the end, all that
we require to construct an aural atlas is overhead imagery
of the region of interest. We show examples of aural atlases
at multiple spatial scales, from block-level to country.

1. Introduction

The visual appearance of a place and its soundscape, the
totality of sounds one hears in a location, are inextricably
linked. For example, in an urban environment, such as on a
busy street corner, you can expect to hear honking, people
talking, and, potentially, a siren. In contrast, in a rural envi-
ronment, such as a forest, you could expect to hear animals
chattering, leaves rustling, and perhaps the sound of rush-
ing water. Given a photograph, humans have the ability to
imagine the sounds they might hear in that moment.

Studies have shown that environmental noise affects so-
cial behavior [8], among other things. Basner et al. [4] sum-
marize research related to noise exposure, including audi-
tory and non-auditory health effects such as reduced cogni-
tive performance and sleep disturbance. Models capturing
the relationship between sound and specific locations could
be used, for example, to help people decide where to live,
or where to place sound barriers.

The objective of our work is to develop methods for un-
derstanding the types of sounds that could be heard at a spe-
cific geographic location. Several recent works have taken
advantage of the synergy between sound and visual appear-
ance to learn better representations. Aytar et al. [3] lever-

Figure 1. We propose a multimodal approach for relating overhead
image appearance with sounds in order to map soundscapes. (left)
Overhead image; (right) Similar ground-level images and sounds
output by our method.

age two million unlabeled videos to learn a state-of-the-art
sound representation for acoustic classification. Owens et
al. [6] incorporate ambient sounds as a supervisory signal
in order to learn visual representations. Most similar to our
work, Aiello et al. [2] proposed a method for constructing
sound maps by using sound-related image tags on a large
set of geo-referenced ground-level imagery. This method
requires high-quality image tags, which aren’t always avail-
able, and performs poorly when ground-level imagery is
sparsely distributed, such as away from major tourist land-
marks.

We take a different approach and explore the problem
of generating a location-dependent sound model. Our ap-
proach builds upon recent advances in both ground-level
and overhead image understanding. A key element of our
approach is that we learn a joint feature representation be-
tween sound, ground-level, and overhead image appearance
(Fig. 1). A unique advantage of our approach is that it en-
ables us to generate a location-dependent sound map (or an
aural atlas) using only overhead imagery, which is available
at most locations.
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Figure 2. An overview of our network architecture.

2. Cross-View Aural Mapping

The objective of our work is to construct a map of the au-
ral environment, which we represent as a conditional proba-
bility distribution, P(s|l), where [ is the geographic location
and s represents the sound. In this work, we explore a novel
approach, conditioning our aural map on the overhead im-
agery of a location, P(s|I(l)), where I(l) is an overhead
image of location {. This is a promising approach because
many visual features that relate sound to location are visi-
ble from above. Furthermore, high-resolution overhead im-
agery is available across the globe and is updated frequently.
We further factorize the distribution as:

ZP

where c represents a cluster of related sounds.

Our approach consists of three phases: learning a suit-
able feature space, clustering sounds, and learning to pre-
dict a distribution over sound clusters from the overhead
imagery using a convolutional neural network.

P(elI(D)),

2.1. Cross-View Sound Dataset

To support our work, we constructed a dataset of geo-
tagged sounds and co-located overhead images, which we
refer to as the Cross-View Sound (CVS) dataset. We col-
lected 23,308 geo-tagged audio files from FreeSound', a
popular crowd-sourced repository. For each audio file, we
downloaded the corresponding overhead image from Bing
Maps (scale 0.60 m/pixel). Analysis of the geolocation as-
sociated with the sound files reveals that the sounds are
recorded from around the world, with more sounds recorded
in Europe and U.S than other parts of the world. Further,
examining the tags associated with the sound files shows
that the sounds cover a wide range of human and natural

https://freesound.org

aspects. For our experiments, we filtered out sounds that
were shorter than 2 seconds and sounds for which there was
no overhead imagery available at the selected scale. This
results in 15,773 sounds and their corresponding overhead
images.

2.2. Learning a Shared Feature Space

In this phase, our goal is to learn a shared feature repre-
sentation that is suitable for our task. Specifically, we want
a feature representation that can jointly describe audio and
overhead imagery. To do this, we propose a convolutional
neural network (CNN) architecture that relates sounds with
co-located overhead images. Our approach builds on recent
work that targets these two subproblems individually. An
overview of our architecture is shown in Fig. 2.

To extract audio features, we use SoundNet [3], a deep
convolutional architecture for sound recognition, trained
by transferring knowledge from existing visual recogni-
tion networks. To train SoundNet, images from unlabeled
videos are passed through the Places network [10] (while
different Places models are available, we always refer to the
one used to train SoundNet), and the output distributions are
used as the target label for a network that takes as input the
corresponding audio file. Given an audio file, the output of
SoundNet is a distribution over 401 visual scene categories.
The resulting network performs remarkably well, despite
being trained without any manually annotated audio files.

To learn the overhead image feature representation, we
use a multimodal training approach similar to SoundNet
and Workman et al. [9]. Specifically, we learn to predict
a distribution over ground-level scene categories from over-
head imagery. Each ground-level image is labeled using
the Places network [10], generating a distribution over 401
scene categories. We then train a VGG-16 [7] network to
predict these distributions using only the overhead image,
minimizing the KL-divergence. We trained the network on
the CVUSA dataset [9], which contains approximately 1.5
million geo-tagged pairs of overhead and ground-level im-
ages. The network is initialized to the weights of the Places
network, and optimized using Adam with learning rate of
0.001 for 5 epochs.

This process results in a shared feature representation
that allows the direct comparison of three different modal-
ities: audio, ground-level imagery, and overhead imagery.
We could, for example, use an image retrieval approach to
identify sounds related to an overhead image. The problem
with this approach is that the sounds close to the overhead
image in the feature space will all be similar, and therefore
potentially not representative of the diversity of sounds one
could hear in a particular area. To overcome this, we intro-
duce a clustering approach to group sounds, which we then
use to map soundscapes.
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Figure 3. The model architecture for predicting a distribution over
sound clusters from an overhead image.

2.3. Clustering Sounds

We group the sounds into a discrete set of clusters using
hierarchical clustering [5]. For a given image-sound pair,
we extract the predicted distributions over the 401 scene
categories for each modality and concatenate them to form
an 802-dimensional vector. Then, this concatenated repre-
sentations is used as input for clustering. The result of this
process is a set of clusters C' = ¢y, . .., ¢. Finally, we filter
out small clusters (less than 500 sounds), leaving 10 clus-
ters. In the following section, we describe our process for
estimating the conditional distribution over sound clusters
for a given location.

2.4. Predicting Sound Clusters from Overhead Im-
agery

We assign each sound to a unique cluster and treat the
cluster assignment, c;, as the label of a given location, ;.
For each location, we obtain the co-located overhead im-
age, I(l;), and train a CNN to predict the sound cluster, ¢;,
from the image. We fine-tune the network described in Sec-
tion 2.2, adding a fully connected layer at the end with ten
outputs (Fig. 3). We minimize the cross-entropy loss us-
ing Adam with a learning rate of 0.001 for 20 epochs. We
now have all of the components of our model and can use
P(c|I(1)) to visualize soundscapes.

3. Experiments

We evaluated our approach both quantitatively and qual-
itatively using a TensorFlow [ ] implementation. We begin
with an analysis of the shared feature space.

3.1. How good is our feature space?

For a given overhead image, we extract the output distri-
bution over scene categories and identify the closest sounds
in CVS and the closest ground-level images in CVUSA, us-
ing KL-divergence. Several qualitative examples are shown
in Fig. 1. The leftmost column shows the overhead image
and the right columns show the top three ground-level im-
ages above the top three sounds. For example, in the bottom
row, the overhead image is of a lake, and the three clos-
est ground-level images appear to be captured on or near a
lake. The results are similar when listening to the closest
sounds; in Fig. 1 (top) the most similar sound contains peo-
ple cheering. The predicted sounds, dataset, and more re-
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Figure 4. Given an overhead image (top), our model outputs a dis-
tribution over sound clusters (bottom).

Table 1. Quantitative performance of different networks.
Network Precision Recall F}-score
sound 0.24 0.19 0.19
joint 0.51 0.34 0.36

sults will be made available online at http://cs.uky.
edu/~salem/audio-mapping/.

3.2. What is the best way to cluster?

We compare our approach for clustering the sounds
against a baseline approach using only sound features. As
described in Section 2.4, we train two models on the two
different clustering approaches. For evaluation, we split the
CVS dataset into 90% training and 10% testing. The result-
ing test set contains 1,578 sounds and corresponding over-
head images.

For a given overhead image, each model outputs a prob-
ability distribution over the sound clusters. The precision,
recall and F}-score for these two models are shown in Ta-
ble 1. The model that was trained on clusters generated
from joint features achieved better performance compared
to the model trained on sound features. The superior per-
formance can be attributed to the fact that the clustering ap-
proach based on joint features takes into account the seman-
tic relation between overhead images and the corresponding
sounds. Fig. 4 shows the output distributions over the 10
clusters for two test images.

3.3. Visualizing An Aural Atlas

Using the trained CNN model to predict a distribution
over sound clusters from an overhead image enables us to
construct sound maps at various spatial scales: block level,
city level, and country level.

Block level: Consider the overhead image on the left of
Fig. 5 which contains beach, water, roads, and buildings.
Clearly the sounds at these places would be different. For
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Figure 5. Block-level audio mapping: (left) An overhead image of
a small geographical region on Miami beach. (right) A per-pixel
labeling of sound clusters.

Figure 6. City-level audio mapping: (left) An overhead image cov-
ering New York City. (right) A per-pixel labeling of sound clus-
ters.

every pixel in the image, we downloaded the correspond-
ing overhead image and used our network (Section 2.4) to
predict the distribution over sound clusters. We show the
results of our approach in Fig. 5 (right), as a per-pixel label-
ing where the color represents the most likely sound clus-
ter (e.g., blue = water-related sounds and orange = traffic
sounds). The color coding is the same for the next two spa-
tial scales.

City level: Here we apply the same technique to a larger
geographic area. Fig. 6 shows the aural atlas for a portion
of New York City. Note how the majority of the urban areas
are colored orange and the water areas are dark blue.

Country level: Finally, we demonstrate the results of
our method at the country level. We used 500,000 overhead
images randomly sampled from the CVUSA dataset and ex-
tracted the sound cluster prediction with our trained model.
Fig. 7 shows the results. Note the orange regions covering
the major metropolitan areas.

4. Conclusion

We created a location-dependent model of sound condi-
tioned on overhead imagery. We showed how our model
could be used for sampling a set of sounds that you would
hear at a given location and to generate maps of sound-
scapes at varying spatial scales. To the best of our knowl-
edge, our work is the first to model the relationship between
overhead imagery and sound. In the future, we will extend
our work to include time, as the sounds you might hear at a

Figure 7. Country-level audio mapping: visualizing the sound
clusters over USA. Gaps (white) are regions where the CVUSA
dataset does not have imagery.

location are highly time dependent.
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