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1. Introduction

Humans perceive objects through both their visual ap-

pearance and the sounds they make. Given a short audio clip

of objects interacting, humans can recover rich information

about the materials, surface smoothness, and the quantity

of objects involved [3]. Although visual information pro-

vides cues for some of these questions, others can only be

assessed with sound. Figure 1 shows an example: objects

with different masses and Young’s moduli may have almost

identical appearance, but they make different sounds when

impacted, and vice versa.

(A) paper cup (B) ceramic cup (C) ceramic plate

Figure 1: Audio and visual data provide complementary informa-

tion: visual cues tell us that A and B are cups and C is a plate;

auditory cues inform us that A is made of a different material (pa-

per) than B and C are (ceramic).

Since collecting large-scale audio recordings with rich

object-level annotations is time-consuming and technically

challenging, We introduce an alternative approach to over-

come such difficulties: synthesizing audio-visual data for

object perception. Our data synthesis framework is com-

posed of three core generative models: a physics engine, a

graphics engine, and an audio engine. The physics engine

takes objects’ shapes, material properties, and initial condi-

tions as input, and then simulates their subsequent motions

and collisions. The graphics engine renders videos based on

the simulated object motion. The audio engine, built upon

previous works [2], synthesize the audio using the output of

physics engine.
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Figure 2: Our generative model for audio-visual scenes. Given

object shapes, material properties, and a scene configuration, a

physics engine simulates both object collisions and motion. An

audio engine then takes the collision data and pre-computed ob-

ject mode shapes for sound synthesis. Graphics engine renders

accompanying video.

With our generative model, we built a new synthetic

dataset, Sound-20K, with audio-visual information. We

show, on both Sound-20K and real-world datasets, that

visual and auditory information contribute complemen-

tarily to object perception tasks and further demonstrate

that knowledge learned on our synthetic dataset can be

transferred for object perception on two real-world video

datasets, Physics 101 [5] and The Greatest Hits [4].

In addition, the audio and physics engine can perform in

real time, which enables us to infer the latent variables that

defines object shape, material properties and initial pose in

an analysis-by-synthesis style. In short, given an audio clip,

we aim to find a set of latent variables that could best repro-

duce it. We use Gibbs sampling over the latent variables and

pass them to our synthesize engine. The likelihood function

is given by the similarity between the input and output au-

dio. We show that with simple similarity measure, such as

l2 distance over spectrogram, such inference scheme per-

forms reasonably well.

2. Synthesis Engine

Our design of the generative model originates from the

underlying mechanism of the physical world: when objects

move in a scene, physical laws apply and physical events

like collisions may occur. What we see is a video rendering
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(a) The recording setup (b) The four tiles we used
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(c) Real vs. synthetic spectra of granite

Tiles
Labeled
real (%)

Oak 45.3

Slate 50.5

Marble 52.6

Granite 46.3

(d) Behaviorial results

Figure 3: We validate our audio synthesis pipeline through

carefully-designed physics experiments. We record the sound

of four tiles of different materials (a-b), and compare its spec-

trum with our synthesized audio (c) with corresponding physical

properties. We also conducted behavioral studies, asking humans

which of the two sounds match the image better. We show results

in (d).

of the scene with respect to object appearance, lighting, etc.,

and what we hear is the vibrations of object shapes caused

by physical events. Our generative model therefore consists

of a physics engine at its core, an associated graphics engine

and an audio engine, as shown in Figure 2. The generative

model can be decomposed into an on-line stage and an off-

line stage. The off-line stage computes object’s acoustic

properties, which is used be the on-line stage to synthesize

audio in real-time.

3. Audio Synthesis Validation

We validated the accuracy of our audio synthesis by

comparing it with real world recordings. We recorded the

sounds made by striking four plates of different materials

(granite, slate, oak and marble) as shown in Figure 3b. The

audio was measured by exciting the center of the plates with

a contact speaker and measuring the resulting vibrations

with a piezo-electric contact microphone placed adjacent to

the speaker (shown in Figure 3a). All measurements were

made in a sound-proof booth to minimize background noise

in the recording.

We validated the accuracy of our synthetic sounds by

comparing the spectrum of synthetic audio with real record-

ings. Figure 3c shows the spectrum comparison between the

synthetic sound and the real recording of the granite tile. We

also designed a human perceptual study in which 95 people

were asked to judge whether the recording or the synthetic

was more realistic. Table 3d shows the percentage of people

who labeled synthetic sounds as real.

4. Experiment Results

(b) Material Classification on Physics 101 (c) Material Classification on The Greatest Hits
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(a) Sample data

Figure 4: Sample data and material classification results
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Figure 5: Human performance and Gibbs sampling result compar-

ison. The horizontal line represents human performance for each

task. Our algorithm closely matches human performance.
We first built Sound-20K using our generative model

with 39 3D shapes sampled from ShapeNet [1]. Each shape

can randomly chose from a pool of 7 material setup. We

designed 22 scenarios with different level of complexity.

Through randomly sampling objects, materials, scenarios

and initial pose, we generated 20,378 audios of objects

falling and interacting with corresponding videos. Samples

are shown in Figure 4a.

We then use Sound-20K to train neural networks on mar-

tial classification and shape attribute recognition. Our re-

sults show that auditory information is complement to vi-

sual cues on such tasks. We further demonstrate knowledge

learned on Sound-20K can be transferred to controlled real

world scenarios in Physics 101 [5]. Results are shown in

Figure 4b and Figure 4c.

Using the on-line stage of our generative model, we fur-

ther explored the task of inferring the latent variables that

generates a given audio. The latent variables consists of ob-

ject shape, material properties and height of the drop. In

this experiment, we use 14 primitive shapes with uniformly

sampled physical properties and initial pose. Using Gibbs

sampling over the latent variables, we aim to find the con-

figuration that could best reconstruct the input audio. Our
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algorithm performs similarly as human subjects in tasks on

inferring objects’ shape and material properties, as shown

in Figure 5.
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