This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

Autoencoders with Variable Sized Latent Vector for Image Compression

Alekh Karkada Ashok
RV College of Engineering,
Bangalore, India

alekhka@gmail.com

Abstract

Learning to compress images is an interesting and chal-
lenging task. Autoencoders have long been used to com-
press images into a code of small but fixed size. As different
images need different sized code based on their complex-
ity, we propose an autoencoder architecture with a variable
sized latent vector. We propose an attention based model
which attends over the image and summarizes it into a small
code. This summarization is repeated many times depend-
ing on the complexity of the image, producing a new code
each time to encode new information so as to get a bet-
ter reconstruction. These small codes then form sub-units
of the final code. Our approach is quality progressive and
has flexible quality setting which are desirable properties
in compression. We show that the proposed model shows
better performance compared to JPEG.

1. Introduction

Image compression is an important area of research.
With ever increasing media consumption, it is the need of
the hour to find more efficient compression methods. With
changing media needs it is also time to do away with hard-
coded compression schemes.

Deep learning has revolutionized image recognition and
realistic image generation. Image compression can also be
improved with deep learning techniques as compression re-
lies heavily on pattern recognition. Compression involves
identifying the structure/pattern present and coming up with
a representation which exploits the identified redundancy.

As deep learning methods exhibit exemplary feature
extraction performance, compression techniques based on
them have shown superior performance over traditional
hard coded codecs. Toderici et al. [13],[14] show usage of
recurrent neural networks for compression and demonstrate
superior performance against JPEG, JPEG2000 and WebP.
Johnston et al. [7] employ a loss weighted with SSIM to
outperform BPG, WebP, JPEG2000, and JPEG. Theis et al.
[12] use compressive autoencoders and Ballé et al.[3] use

Nagaraju Palani
RV College of Engineering,
Bangalore, India

nagarajup@rvce.edu.in

a modified form of quantization. Rippel and Bourdev [10]
employ pyramidal analysis and codelength regularization to
outpeform JPEG, JPEG2000, BPG and WebP by a signifi-
cant margin.

Autoencoders are a popular architecture for image com-
pression [12], [3]], [15]], [1], [9]. Autoencoders are made
of three distinct parts - the encoder, the latent vector and
the decoder. The encoder encodes the input into a latent
vector of a fixed size and the decoder learns to reconstruct
the original input from the latent vector. For compression
applications, the latent vector has lesser dimensions com-
pared to the dimensions of the input. In effect, the encoder
has to learn to discover structures in the input and exploit
the redundancy to be able to encode into a space of lesser
dimension. On the other hand, the decoder has to learn to
understand the encoding and reconstruct the original input
from the compressed representation.

An acute drawback of autoencoders is the fixed size of
the latent vector. This forces all images to be represented
by a code of fixed size. This is not ideal because the code-
length should depend on the complexity of the image. A
busy image with lot of objects might need a longer code-
word than a simple image. This makes variable sized latent
vector a necessity. Variable sized latent vector is not triv-
ially achievable in normal autoencoders because of the na-
ture of convolution and transposed convolution operations.

We propose an attention based model for this task. At-
tention mechanism has been successfully applied to ma-
chine translation [4],[2]], image captioning [16], one shot
image recognition [11] etc. Gregor et al. introduced
a zoom-able and differentiable attention mechanism in
DRAW [6] model. Many works from the past [5],[8] have
shown that visual structure can be captured better by a se-
quence of glimpses as opposed to a single feed forward in-
put.

2. Methods

The proposed architecture makes the following modifi-
cations to autoencoders: 1. attention mechanism replacing
the feed-forward convolution pipeline in the encoder 2. se-

2547

Attending
over the
image

.. ‘n’glimpses

After ‘n” glimpses
Latent vector:
(Fixed size ‘a’)

After first glimpse session

Latent vector: -

After second glimpse session

After ‘n’ glimpses After ‘n’ glimpses

Latent vector: - -

After third glimpse session

Figure 1. Three glimpse sessions of the encoder. After ‘n’ glimpses the hidden state of the RNN controller is taken as a codeword.
Therefore, the codeword has the size of the hidden state of the RNN. Each newly produced codeword is appended to the latent vector array.
The glimpse parameter generator neural network is omitted for simplicity.

ries of small codewords replacing the fixed-size latent vec-
tor 3. transposed convolution pipeline taking each code-
word from the latent vector array and updating the recon-
structed image

2.1. Encoder

The encoder summarizes the input image by attending
over the image. It consists of a recurrent neural network
controller which governs the area of the image to attend to.
The attention mechanism takes in the image and glimpse
parameters to produce a glimpse output.

Gt = attend([, Qt) where Qt = Wght—l

attend() is the attention mechanism and the glimpse pa-
rameters specify the location and size of the attention win-
dow. The glimpse parameters are obtained from the previ-
ous RNN hidden state using a small fully-connected neu-
ral network called as the glimpse parameter generator. The
glimpse and the hidden state are used to produce the RNN’s
next hidden state. This encodes the image according to what
is known from the current glimpse and what was previously
known about the image. The next glimpse is dependent on
the glimpse parameters which are in turn dependent on the
hidden state of the RNN controller. In effect, the hidden
state of the RNN holds what is already known about the im-
age and dictates what new information should be brought
in.

The attention mechanism used is identical to the one
used by Shyam et al. [11]] which is an improvement of
the mechanism used by Gregor et al. [6] As cropping im-
ages is non-differentiable, soft attention is used where pix-
els are weighted according their ‘importance’. This is done
by placing an N x N grid of kernels over the image. In this
work, Cauchy kernels have been used. The location of the
grid (x,y) and its size (§) is given by the glimpse parame-
ters. The grid of kernels is placed on the image, with the

central Cauchy kernel being located at (x,y). The kernels
are placed with a stride of , which gives the spacing be-
tween the kernels. The § in effect determines how large
the attention window is. The parameters X,y,0 are obtained
from the output (:ﬁ,g},é) of the glimpse parameter generator
neural network by:

w=(S—1) Ty (5-1) T

§=25(1-18)

The location of a Cauchy kernel at the i*" row, j** col-
umn in terms of the pixel coordinates of the image is given
by:

iy = o+ (i—(N+1)/2)5 iy = y+(i—(N+1)/2)3

The glimpse is calculated using separate horizontal and
vertical filterbank matrices. These matrices are given by:

Fxlisa] = & {m {1 + (%)2] }_1
Fylj,b] = A {m [1 n (b‘—;‘z)Q] }_1

Zx and Zy are normalization constants such that they
make ¥, Fx[i,a] = 1 and Xy Fx [j,b] = 1
The glimpse output is given by:

attend(I,Q;) = Fy IFL

The image is attended ‘n’ times to produce one code-
word of size ‘a’ which is the size of the hidden state of the
RNN. This constitutes one glimpse session. The state of
the RNN after ‘n’ glimpses is taken as the codeword ‘c’.
This is repeated to produce further codewords as shown in
Figure [T} After each codeword is produced, it is passed
to the decoder which reconstructs the image from it, which
is then compared to the original input image and the error

2548

t=1:

Latent vector array with codewords of length ‘a’

Transposed

Reconstruction

conv net

Transposed

Reconstruction + Previous reconstruction

conv net

For all codewords @

Figure 2. Steps for decoding two codewords of the latent vector array. The output from each codeword is used as an update or ‘correction’

to the reconstructed image.

is found out. With each codeword, the reconstructed im-
age improves and the encoding is repeated until the recon-
structed image reaches a desirable quality level. Since the
size of the glimpse window is fixed, the glimpse obtained
gets ‘pixelated” when zoomed out (as stride () is large),
which gives an approximate about what the image holds and
where in the image. This will further influence where the
encoder should attend next.

2.2. Latent vector

Latent vector of fixed size in the autoencoder is replaced
with an array ‘L’ of codewords, each having size ‘a’. Each
codeword ‘c’ produced by the encoder after each glimpse
session is appended to the latent vector array. L; denotes
the latent vector after t glimpse sessions.

Ly =[Li—1,c] where cis the new codeword after ‘n’
glimpses

2.3. Decoder

The decoder starts with an empty canvas and each code-
word is used to update the canvas. Each codeword is input
into the transposed convolutional network to generate a 2D
array of size equal to the input image. This serves as the
update:

reconstructed; = reconstructed;—1 + Wypeonw (L[t])

Waupconv represents the transposed convolutional net-
work. Each output of the network is due to a new codeword
from the latent vector array. Hence, each output is an update
to the reconstructed image in view of the new information
encoded in the codeword. Figure [2|shows two steps of the
decoder, showing how the reconstruction is improved.

3. Experiments
3.1. Data

We trained the model on the MNIST dataset and the
CLIC dataset provided by the Computer Vision Lab of ETH
Zurich. The encoder and decoder learn to efficiently encode
and decode the images in the dataset. Hence, dataset selec-
tion is crucial. A well rounded dataset covering all kinds
of images required by the application is necessary for good
performance.

3.2. Results and discussion

As outlined in Table [T} encoding and decoding is fast in
Nvidia Geforce 920M, a lower end notebook GPU.

] | Average time

42ms
32ms

Encoder
Decoder

Table 1. Average time taken for encoding and decoding on 920M
GPU.

We observe that the approach produces good reconstruc-
tions even at low bits per pixel values. Figure [3] shows a
comparison between our approach and JPEG. We see that in
the case of JPEG, there is a drastic decrease in the quality
and the presence of lot of artifacts. In our approach, arti-
facts are low and there is a good reconstruction even at low
bits per pixel values. Figure [3| shows the image improving
with additional codewords. Each codeword encodes more
information about the image and thus the image improves
with more codewords.

We see that our approach has several properties desir-
able in compression- 1. Quality progressive - the decoder

2549

1.744 bpp 1.950 bpp

Original image

0.122 bpp 0.244 bpp

Pa—
JPEG: .
—_—
o . . \
M

2.590 bpp

0.360 bpp 0.401 bpp

Improvement with more codewords

Figure 3. Reconstructed images for various bpp values. JPEG images of comparable quality are shown to take lot more bits per pixel. The
reconstructions in our approach show a clear improvement in quality and reduction in artifacts as more codewords are used.

doesn’t have to wait for the whole bitstream to arrive. The
decoding can start with the first codeword itself and the im-
age can be improved with subsequent codewords. 2. Qual-
ity flexible - The encoder can take in a “quality” parameter
and encode until that quality is achieved. 3. Domain adapt-
able - Can be trained on a dataset of specific variety and
obtain highly efficient compression for that domain.

4. Conclusion

The paper presented a novel modification to autoencoder
architecture to make it more suitable for image compres-
sion. We showed that the approach gives good quality re-
constructions even at low bpp values. We further showed
that the approach has many desirable advantages.

Acknowledgement: We would like to thank Pranav
Shyam, Vishwesh Nayak and Vignesh R for their ex-
tensive support and feedback while developing ideas and
manuscript for this work.

References

[1] E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli,
R. Timofte, L. Benini, and L. V. Gool. Soft-to-hard vec-
tor quantization for end-to-end learning compressible repre-
sentations. In Advances in Neural Information Processing
Systems, pages 1141-1151, 2017.

[2] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine
translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

[3] J. Ballé, V. Laparra, and E. P. Simoncelli. End-
to-end optimized image compression. arXiv preprint
arXiv:1611.01704, 2016.

[4] K. Cho, B. Van Merriénboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase
representations using rnn encoder-decoder for statistical ma-
chine translation. arXiv preprint arXiv:1406.1078, 2014.

[5] M. Denil, L. Bazzani, H. Larochelle, and N. de Freitas.
Learning where to attend with deep architectures for image
tracking. CoRR, abs/1109.3737, 2011.

[6] K. Gregor, 1. Danihelka, A. Graves, D. J. Rezende, and
D. Wierstra. Draw: A recurrent neural network for image
generation. arXiv preprint arXiv:1502.04623, 2015.

N. Johnston, D. Vincent, D. Minnen, M. Covell, S. Singh,

T. Chinen, S. J. Hwang, J. Shor, and G. Toderici. Im-

proved lossy image compression with priming and spatially

adaptive bit rates for recurrent networks. arXiv preprint

arXiv:1703.10114, 2017.

H. Larochelle and G. Hinton. Learning to combine foveal

glimpses with a third-order boltzmann machine. In Pro-

ceedings of the 23rd International Conference on Neural In-
formation Processing Systems - Volume 1, NIPS’10, pages

1243-1251, USA, 2010. Curran Associates Inc.

[9] M. Li, W. Zuo, S. Gu, D. Zhao, and D. Zhang. Learning con-
volutional networks for content-weighted image compres-
sion. arXiv preprint arXiv:1703.10553, 2017.

[10] O. Rippel and L. Bourdev. Real-time adaptive image com-
pression. arXiv preprint arXiv:1705.05823, 2017.

[11] P. Shyam, S. Gupta, and A. Dukkipati. Attentive recurrent
comparators. arXiv preprint arXiv:1703.00767, 2017.

[12] L. Theis, W. Shi, A. Cunningham, and F. Huszar. Lossy
image compression with compressive autoencoders. arXiv
preprint arXiv:1703.00395, 2017.

[13] G. Toderici, S. M. O’Malley, S. J. Hwang, D. Vincent,
D. Minnen, S. Baluja, M. Covell, and R. Sukthankar. Vari-
able rate image compression with recurrent neural networks.
arXiv preprint arXiv:1511.06085, 2015.

[14] G. Toderici, D. Vincent, N. Johnston, S. J. Hwang, D. Min-
nen, J. Shor, and M. Covell. Full resolution image compres-
sion with recurrent neural networks. arXiv preprint, 2016.

[15] R. Torfason, F. Mentzer, E. Agustsson, M. Tschannen,
R. Timofte, and L. Van Gool. Towards image understand-
ing from deep compression without decoding. arXiv preprint
arXiv:1803.06131, 2018.

[16] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudi-
nov, R. Zemel, and Y. Bengio. Show, attend and tell: Neural
image caption generation with visual attention. In Interna-
tional Conference on Machine Learning, pages 2048-2057,
2015.

[7

—

[8

—

2550

