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Abstract

In this paper, we provide the description of our approach
designed for participating the CVPR 2018 Challenge on
Learned Image Compression (CLIC). Our approach is a
hybrid image coder based on CNN-optimized in-loop filter
and mode coding, with uncertainty based resource alloca-
tion for compressing the task images. Two solutions were
submitted, i.e., “iipTiramisu” and its speedup version “iip-
TiramisuS”, resulting in 32.14 dB and 32.06 dB in PSNR,
respectively. These two results have been ranked No. 1 and
2 on the leaderboard.

1. Introduction

Recently, the popularity of image sharing on the social
network or instant messenger such as QQ and WeChat in
daily lives has brought explosive growth of image data,
which brings great challenges in applications and services
due to the limited communication bandwidth and storage re-
sources. Many image compression methods have been de-
veloped to efficiently compress the image, e.g. JPEG, JPEG
2000 , WebP, H.265/HEVC Main Still Picture (HEVC-
MSP) profile etc. For example, BPG is an image com-
pression scheme developed based on H.265/HEVC. It in-
cludes some optimization based on H.265/HEVC intra cod-
ing, which achieves higher compression performance than
JPEG or JPEG 2000 at similar quality.

In this paper, we design a hybrid block-based image
compression approach based on conventional neural net-
work (CNN). First, we introduce CNN into two important
parts of the traditional hybrid block-based encoder, mode
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Figure 1: The architecture of our image codec.

coding and in-loop filter, to guarantee high coding effi-
ciency. We design a CNN based method to predict probabil-
ity distribution of syntax element and boost the performance
of in-loop filtering with a novel convolutional network that
incorporates dense connection and identity skip connection.
Moreover, the uncertainty based resource allocation is used
to solve the constrained minimum distortion optimization
problem, which can determine appropriate quantization pa-
rameter (QP) for each image efficiently. The experimen-
tal results demonstrate the superior performance of the pro-
posed approach.

2. Our Image Compression Approach
2.1. Hybrid block-based image codec

In the proposed approach, we develop our codec
based on the JEM platform, i.e., Joint Exploration Model
(JEM) 7.1 [1]], which is the codec developed based on
H.265/HEVC structure. We design CNN based in-loop fil-
ter (CNNIF) and CNN based mode coding (CNNMC) to
enhance the coding performance. Our image compression
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Figure 2: The architecture of CNNIF. N and M denote the
number of DRU and the feature maps generated by the con-
volutional layer, respectively.
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Figure 3: Dense residual unit in our network.

framework is shown in Fig. [[] Each image is split into
block-shaped regions, and coded using intra prediction and
other coding modules. The residual signal of intra predic-
tion is transformed by a linear spatial transformation. The
transform coefficients are then scaled, quantized and coded
with entropy coding. Moreover, CNNMC and CNNIF are
performed based on rate-distortion optimized coder control.
In addition, relevant and irrelevant syntax elements are re-
visited to further improve the coding performance.

2.2. CNN based In-Loop Filter (CNNIF)

In-loop filtering is an important technique in current
mainstream codec for improving the quality of compressed
image. Motivated by the latest advances of CNNs in image
classification [2] 3] and image restoration [4} 3], we design
anovel CNN architecture and further boost the performance
of in-loop filtering.

The whole architecture of our network is shown in Fig.
[2l The input of the network is the decoded image in RGB
color space. Apart from the last convolution layer that out-
puts a 3-channel image, other layers generate the same num-
ber of feature maps. The network is mainly constructed
by stacking many dense residual units (DRU) as shown in
Fig.[3] We employ the residual block structure with iden-
tity shortcuts and further improve it for better performance
on in-loop filtering. The goal of our network is to restore
the information lost in encoding process, where the input
and the target are highly similar. Since most of the residu-
als between the input and the target are small or zero, the
residual learning contributes to faster convergence and eas-
ier training without introducing extra parameters. The recti-
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Figure 4: Architecture of the proposed network for proba-
bility distribution prediction. Convolutions are followed by
tanh activations.

fied linear unit after the shortcut connection of the residual
block is removed for fast convergence as indicated in [4].
There is a highway connection in the unit that allows the
signal to bypass the convolutional layers and directly prop-
agate to the next unit. The outputs of the first and the last
convolutional layers are firstly added and then concatenated
with the original input to generate the final output of the
unit. Then each DRU further learns the residuals of above
feature maps and propagates them to the next unit. Since
each DRU receives the outputs from all preceding units, we
append a 1 x 1 convolutional layer as the bottleneck layer
for saving computational resources. No activation layer is
appended after the bottleneck layer so that the bottleneck
layer simply generates the linear combination of the inputs.
The first 1 x 1 convolutional layer inside each unit plays
a role of combining the information from all those inputs
by weights and reducing the number of parameters of the
network model at the same time.

Note that the batch normalization (BN) layers are re-
moved in our network, since it normalizes the input signals
and may lead to difference between the input and the target.
No activation layer is appended in the network except in the
DRU and the first DRU has no 1 x 1 convolutional layer.
Stacked feature maps and dimension reduction achieved by
1 x 1 convolutional layer are the key of keeping balance
between promoting filtering performance and saving com-
putational resources.

2.3. CNN based Mode Coding (CNNMC)

For modern image compression, intra prediction is a key
role to provide high efficiency in compression. The cor-
responding syntax elements, e.g., intra prediction mode,
will be encoded by Context-Based Adaptive Binary Arith-
metic Coding (CABAC) in JEM. To compress it efficiently,
a heuristic method to derive the Most Probable Modes
(MPMs) has been introduced since H.264/AVC. The opti-
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mal intra prediction mode, which is decided by RDO, is
encoded based on the MPMs to help reduce the number of
encoded symbols. Hence the accuracy of the MPMs is of
great importance to guarantee the compression performance
and the CNN based method could improve the performance
eventually [6]. In this work, we design a CNN-based proba-
bility distribution prediction for intra prediction mode cod-
ing.

The architecture of the proposed network is shown in
Fig. @] It utilizes the above, the left and the above-left
reconstructed blocks. Reconstructed blocks and intra pre-
diction modes of them are used as the input of the proposed
network. Note that intra prediction information is stored
every 4 x 4 block, so there are totally 32 x 32 units in a
128 x 128 block. Hence the size of input reconstructed
blocks is 128 x 128 x 3 and the size of intra prediction
information is 32 x 32 x 3. On the other hand, the direc-
tional intra modes in JEM are extended from 33, as defined
in HEVC, to 65 [1]. Therefore, the output of the network
is a probability distribution P of each unit of all the modes
with size of 32 x 32 x 67, which means that P(i, j) is a 67-
dimension (with DC mode and planar mode) non-negative
vector whose sum is 1 and P(4, j, k) denotes probability of
the kth prediction mode of the unit located at ¢th row and
jth column. The MPMs are derived from P according to
the location and size. For example, if the block’s upper left
point is located at (r, ¢) with size m x n in the block, then
the corresponding probability p is obtain as:

. it 2j_o Pli+r,j+0) 0

mXn

which is used to indicate the probabilities of prediction
modes. Then the MPMs are derived and sorted based on

p.

2.4. Uncertainty based Resource Allocation (UN-
RA)

As the task of the challenge is to minimize the overall
distortion of the image set under the given rate constraint,
we can find the allocated rate for each image by solving the
corresponding optimization problem. For this, we need sev-
eral tuples of R-D data to obtain R-D relationship for each
image. However, there usually exists difference between the
estimated values and the real values of parameters due to the
inevitable estimation error, which is regarded as uncertainty
in this paper. After statistical analysis of the coding results
of the training set, we can apply the normal distribution to
express the uncertainty. Thus, the objective of uncertainty
based resource allocation is to minimize the total expecta-

l Method \ bpp \ PSNR ‘
BPG 0.149 | 30.85
UN-RA+CNNIF_S (iipTiramisuS) 0.149 | 32.06
UN-RA+CNNIF+CNNMC (iipTiramisu) | 0.148 | 32.14

Table 1: The performance of the proposed ap-
proaches. The details could be found on the leaderboard
(http://www.compression.cc/leaderboard/).

tion distortion subjective to the rate constraint:

N

N
argmin Y E(Di(Qi) x Pi) s.t. Y E(Ri(Qi) x P,) < T
QuQn = i=1
2

where @; means the QP of ith image. D;(Q;) and R;(Q;)
stand for the distortion (MSE) and rate (bpp) of the ith im-
age encoded by @), respectively. P; represents the num-
ber of pixels in the ith image and 7" means the total target
bits. Specifically, we apply a hyperbolic function based R-D
model [[7]], and the relationship between the optimal QP for
a given A to obtain R-QP and D-QP models. This optimiza-
tion problem can be solved by applying dynamic program-
ming. We first construct a graph where the node represents
the rate and distortion of an image encoded by a specific QP,
then we can use Depth-First-Search (DFS) method to search
the optimal QP combinations in the constructed graph. For
practice, we divide the test image set into group of pictures
(GOP) with M frames (M > 1) in each GOP, which can
reduce the complexity to find the optimal QP combination.
After obtaining the optimal QP combinations for each GOP,
they can be applied in practical image compression.

3. Experiments

To evaluate the performance and the effectiveness of our
method, we participate in the Workshop and Challenge on
Learned Image Compression (CLIC) of CVPR 2018. This
challenge provides two image datasets: Dataset P (“profes-
sional”’) and Dataset M (“mobile”) that are collected to be
representative for images commonly used in the wild, con-
taining around two thousand images (in which about 1633
images are used for training, 102 for validation and 286 for
test). The participants are required to submit an encoded
file for each test image and the total file size should be less
than 0.15 bpp. Due to the limit of space, we only provide
the results of our approaches and BPG on the validation
dataset under the challenge requirements. For the proposed
method, we first apply the UN-RA approach and set 0.15
bpp as the rate constraint. Then, we enable the designed
CNN based in-loop filter (CNNIF) and CNN based mode
coding (CNNMC) tools for evaluation. We also designed a
simplified version of the CNNIF, named CNNIF_S, where
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Figure 5: The Rate-PSNR curve of different encoders. (bit
rate range 0.05-0.35 bpp)

Proposed Scheme
iipTiramisu | iipTiramisuS
3080% | -27.90% |

Compared Anchor
| BPG |

Table 2: The BD-rate comparison of the proposed schemes
and BPG. (bit rate range 0.05-0.35 bpp)

the number of DRU is reduce from 8 to 2, and the number
of feature maps is reduced from 64 to 32, respectively. In
the experiment of speedup version, we only enabled CN-
NIF_S. From Table. [T} we can see the PSNR results of pro-
posed approaches are both higher than BPG for more than
1 dB, whose PSNR are 32.06 dB and 32.14 dB respectively
while that of BPG is 30.85 dB. To further verify the perfor-
mance of our proposed schemes, the Rate-PSNR curve of
different encoders is shown in Fig. [5] and the correspond-
ing Bj¢ntegaard-Delta rate (BD-rate) gain is listed in Ta-
ble[2] where we can see our two schemes both outperform
BPG significantly. When compared with BPG, the proposed
scheme can gain up to 30.80%. Fig. [f] also shows some
compressed images for visualization.

4. Conclusion

In this paper, we have designed a hybrid block-based
image compression approach. Based on traditional hybrid
block-based encoder, a novel convolutional network that in-
corporates dense connection and identity skip connection is
proposed to enhance the performance of in-loop filtering,
then a CNN based method is employed to predict proba-
bility distribution of syntax elements and reduce the vol-
ume of symbols to be encoded. Finally we solve the con-
strained minimum distortion optimization problem and find
the appropriate QP for each image based on an uncertainty
based resource allocation method. As shown in the results
of the challenges, our approach achieves the best perfor-

(c) compressed by iipTiramisu, bpp:(d) compressed by iipTiramisu,

0.08, PSNR: 34.79 dB bpp: 0.19, PSNR: 31.38 dB
—— S

0.08, PSNR: 34.31 dB bpp: 0.19, PSNR: 31.18 dB

Figure 6: Visualization of some compressed images and
their enlarged details.

mance among all submissions.
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