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Abstract

In this paper, we provide the description of our approach

designed for participating the CVPR 2018 Challenge on

Learned Image Compression (CLIC). Our approach is a

hybrid image coder based on CNN-optimized in-loop filter

and mode coding, with uncertainty based resource alloca-

tion for compressing the task images. Two solutions were

submitted, i.e., “iipTiramisu” and its speedup version “iip-

TiramisuS”, resulting in 32.14 dB and 32.06 dB in PSNR,

respectively. These two results have been ranked No. 1 and

2 on the leaderboard.

1. Introduction

Recently, the popularity of image sharing on the social

network or instant messenger such as QQ and WeChat in

daily lives has brought explosive growth of image data,

which brings great challenges in applications and services

due to the limited communication bandwidth and storage re-

sources. Many image compression methods have been de-

veloped to efficiently compress the image, e.g. JPEG, JPEG

2000 , WebP, H.265/HEVC Main Still Picture (HEVC-

MSP) profile etc. For example, BPG is an image com-

pression scheme developed based on H.265/HEVC. It in-

cludes some optimization based on H.265/HEVC intra cod-

ing, which achieves higher compression performance than

JPEG or JPEG 2000 at similar quality.

In this paper, we design a hybrid block-based image

compression approach based on conventional neural net-

work (CNN). First, we introduce CNN into two important

parts of the traditional hybrid block-based encoder, mode
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Figure 1: The architecture of our image codec.

coding and in-loop filter, to guarantee high coding effi-

ciency. We design a CNN based method to predict probabil-

ity distribution of syntax element and boost the performance

of in-loop filtering with a novel convolutional network that

incorporates dense connection and identity skip connection.

Moreover, the uncertainty based resource allocation is used

to solve the constrained minimum distortion optimization

problem, which can determine appropriate quantization pa-

rameter (QP) for each image efficiently. The experimen-

tal results demonstrate the superior performance of the pro-

posed approach.

2. Our Image Compression Approach

2.1. Hybrid block­based image codec

In the proposed approach, we develop our codec

based on the JEM platform, i.e., Joint Exploration Model

(JEM) 7.1 [1], which is the codec developed based on

H.265/HEVC structure. We design CNN based in-loop fil-

ter (CNNIF) and CNN based mode coding (CNNMC) to

enhance the coding performance. Our image compression
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Figure 2: The architecture of CNNIF. N and M denote the

number of DRU and the feature maps generated by the con-

volutional layer, respectively.
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Figure 3: Dense residual unit in our network.

framework is shown in Fig. 1. Each image is split into

block-shaped regions, and coded using intra prediction and

other coding modules. The residual signal of intra predic-

tion is transformed by a linear spatial transformation. The

transform coefficients are then scaled, quantized and coded

with entropy coding. Moreover, CNNMC and CNNIF are

performed based on rate-distortion optimized coder control.

In addition, relevant and irrelevant syntax elements are re-

visited to further improve the coding performance.

2.2. CNN based In­Loop Filter (CNNIF)

In-loop filtering is an important technique in current

mainstream codec for improving the quality of compressed

image. Motivated by the latest advances of CNNs in image

classification [2, 3] and image restoration [4, 5], we design

a novel CNN architecture and further boost the performance

of in-loop filtering.

The whole architecture of our network is shown in Fig.

2. The input of the network is the decoded image in RGB

color space. Apart from the last convolution layer that out-

puts a 3-channel image, other layers generate the same num-

ber of feature maps. The network is mainly constructed

by stacking many dense residual units (DRU) as shown in

Fig. 3. We employ the residual block structure with iden-

tity shortcuts and further improve it for better performance

on in-loop filtering. The goal of our network is to restore

the information lost in encoding process, where the input

and the target are highly similar. Since most of the residu-

als between the input and the target are small or zero, the

residual learning contributes to faster convergence and eas-

ier training without introducing extra parameters. The recti-
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Figure 4: Architecture of the proposed network for proba-

bility distribution prediction. Convolutions are followed by

tanh activations.

fied linear unit after the shortcut connection of the residual

block is removed for fast convergence as indicated in [4].

There is a highway connection in the unit that allows the

signal to bypass the convolutional layers and directly prop-

agate to the next unit. The outputs of the first and the last

convolutional layers are firstly added and then concatenated

with the original input to generate the final output of the

unit. Then each DRU further learns the residuals of above

feature maps and propagates them to the next unit. Since

each DRU receives the outputs from all preceding units, we

append a 1 × 1 convolutional layer as the bottleneck layer

for saving computational resources. No activation layer is

appended after the bottleneck layer so that the bottleneck

layer simply generates the linear combination of the inputs.

The first 1 × 1 convolutional layer inside each unit plays

a role of combining the information from all those inputs

by weights and reducing the number of parameters of the

network model at the same time.

Note that the batch normalization (BN) layers are re-

moved in our network, since it normalizes the input signals

and may lead to difference between the input and the target.

No activation layer is appended in the network except in the

DRU and the first DRU has no 1 × 1 convolutional layer.

Stacked feature maps and dimension reduction achieved by

1 × 1 convolutional layer are the key of keeping balance

between promoting filtering performance and saving com-

putational resources.

2.3. CNN based Mode Coding (CNNMC)

For modern image compression, intra prediction is a key

role to provide high efficiency in compression. The cor-

responding syntax elements, e.g., intra prediction mode,

will be encoded by Context-Based Adaptive Binary Arith-

metic Coding (CABAC) in JEM. To compress it efficiently,

a heuristic method to derive the Most Probable Modes

(MPMs) has been introduced since H.264/AVC. The opti-

2560



mal intra prediction mode, which is decided by RDO, is

encoded based on the MPMs to help reduce the number of

encoded symbols. Hence the accuracy of the MPMs is of

great importance to guarantee the compression performance

and the CNN based method could improve the performance

eventually [6]. In this work, we design a CNN-based proba-

bility distribution prediction for intra prediction mode cod-

ing.

The architecture of the proposed network is shown in

Fig. 4. It utilizes the above, the left and the above-left

reconstructed blocks. Reconstructed blocks and intra pre-

diction modes of them are used as the input of the proposed

network. Note that intra prediction information is stored

every 4 × 4 block, so there are totally 32 × 32 units in a

128 × 128 block. Hence the size of input reconstructed

blocks is 128 × 128 × 3 and the size of intra prediction

information is 32 × 32 × 3. On the other hand, the direc-

tional intra modes in JEM are extended from 33, as defined

in HEVC, to 65 [1]. Therefore, the output of the network

is a probability distribution P of each unit of all the modes

with size of 32× 32× 67, which means that P (i, j) is a 67-

dimension (with DC mode and planar mode) non-negative

vector whose sum is 1 and P (i, j, k) denotes probability of

the kth prediction mode of the unit located at ith row and

jth column. The MPMs are derived from P according to

the location and size. For example, if the block’s upper left

point is located at (r, c) with size m × n in the block, then

the corresponding probability p is obtain as:

p =

∑m

i=0

∑n

j=0
P (i+ r, j + c)

m× n
(1)

which is used to indicate the probabilities of prediction

modes. Then the MPMs are derived and sorted based on

p.

2.4. Uncertainty based Resource Allocation (UN­
RA)

As the task of the challenge is to minimize the overall

distortion of the image set under the given rate constraint,

we can find the allocated rate for each image by solving the

corresponding optimization problem. For this, we need sev-

eral tuples of R-D data to obtain R-D relationship for each

image. However, there usually exists difference between the

estimated values and the real values of parameters due to the

inevitable estimation error, which is regarded as uncertainty

in this paper. After statistical analysis of the coding results

of the training set, we can apply the normal distribution to

express the uncertainty. Thus, the objective of uncertainty

based resource allocation is to minimize the total expecta-

Method bpp PSNR

BPG 0.149 30.85

UN-RA+CNNIF S (iipTiramisuS) 0.149 32.06

UN-RA+CNNIF+CNNMC (iipTiramisu) 0.148 32.14

Table 1: The performance of the proposed ap-

proaches. The details could be found on the leaderboard

(http://www.compression.cc/leaderboard/).

tion distortion subjective to the rate constraint:

argmin
Q1···QN

N∑

i=1

E(Di(Qi)×Pi) s.t.

N∑

i=1

E(Ri(Qi)× Pi) 6 T

(2)

where Qi means the QP of ith image. Di(Qi) and Ri(Qi)
stand for the distortion (MSE) and rate (bpp) of the ith im-

age encoded by Qi, respectively. Pi represents the num-

ber of pixels in the ith image and T means the total target

bits. Specifically, we apply a hyperbolic function based R-D

model [7], and the relationship between the optimal QP for

a given λ to obtain R-QP and D-QP models. This optimiza-

tion problem can be solved by applying dynamic program-

ming. We first construct a graph where the node represents

the rate and distortion of an image encoded by a specific QP,

then we can use Depth-First-Search (DFS) method to search

the optimal QP combinations in the constructed graph. For

practice, we divide the test image set into group of pictures

(GOP) with M frames (M > 1) in each GOP, which can

reduce the complexity to find the optimal QP combination.

After obtaining the optimal QP combinations for each GOP,

they can be applied in practical image compression.

3. Experiments

To evaluate the performance and the effectiveness of our

method, we participate in the Workshop and Challenge on

Learned Image Compression (CLIC) of CVPR 2018. This

challenge provides two image datasets: Dataset P (“profes-

sional”) and Dataset M (“mobile”) that are collected to be

representative for images commonly used in the wild, con-

taining around two thousand images (in which about 1633

images are used for training, 102 for validation and 286 for

test). The participants are required to submit an encoded

file for each test image and the total file size should be less

than 0.15 bpp. Due to the limit of space, we only provide

the results of our approaches and BPG on the validation

dataset under the challenge requirements. For the proposed

method, we first apply the UN-RA approach and set 0.15

bpp as the rate constraint. Then, we enable the designed

CNN based in-loop filter (CNNIF) and CNN based mode

coding (CNNMC) tools for evaluation. We also designed a

simplified version of the CNNIF, named CNNIF S, where
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Figure 5: The Rate-PSNR curve of different encoders. (bit

rate range 0.05-0.35 bpp)

Compared Anchor

Proposed Scheme

iipTiramisu iipTiramisuS

BPG -30.80% -27.90%

Table 2: The BD-rate comparison of the proposed schemes

and BPG. (bit rate range 0.05-0.35 bpp)

the number of DRU is reduce from 8 to 2, and the number

of feature maps is reduced from 64 to 32, respectively. In

the experiment of speedup version, we only enabled CN-

NIF S. From Table. 1, we can see the PSNR results of pro-

posed approaches are both higher than BPG for more than

1 dB, whose PSNR are 32.06 dB and 32.14 dB respectively

while that of BPG is 30.85 dB. To further verify the perfor-

mance of our proposed schemes, the Rate-PSNR curve of

different encoders is shown in Fig. 5, and the correspond-

ing Bjφntegaard-Delta rate (BD-rate) gain is listed in Ta-

ble 2, where we can see our two schemes both outperform

BPG significantly. When compared with BPG, the proposed

scheme can gain up to 30.80%. Fig. 6 also shows some

compressed images for visualization.

4. Conclusion

In this paper, we have designed a hybrid block-based

image compression approach. Based on traditional hybrid

block-based encoder, a novel convolutional network that in-

corporates dense connection and identity skip connection is

proposed to enhance the performance of in-loop filtering,

then a CNN based method is employed to predict proba-

bility distribution of syntax elements and reduce the vol-

ume of symbols to be encoded. Finally we solve the con-

strained minimum distortion optimization problem and find

the appropriate QP for each image based on an uncertainty

based resource allocation method. As shown in the results

of the challenges, our approach achieves the best perfor-

(a) compressed by BPG, bpp: 0.08,

PSNR: 32.46 dB

(b) compressed by BPG, bpp:

0.19, PSNR: 29.05 dB

(c) compressed by iipTiramisu, bpp:

0.08, PSNR: 34.79 dB

(d) compressed by iipTiramisu,

bpp: 0.19, PSNR: 31.38 dB

(e) compressed by iipTiramisuS, bpp:

0.08, PSNR: 34.31 dB

(f) compressed by iipTiramisuS,

bpp: 0.19, PSNR: 31.18 dB

Figure 6: Visualization of some compressed images and

their enlarged details.

mance among all submissions.
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