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Abstract

In this paper, we describe our submission to the work-

shop and challenge on learned image compression (CLIC)

hosted at CVPR 2018. Lossy compressed images usually

suffer from unpleasant artifacts, especially when the bit-

rate is low. In order to improve the image quality without

spending extra bit-rate, decoder side quality enhancement

becomes necessary. Most approaches focus on spatial in-

formation exploration, in which the quality enhancement is

usually only performed on the luminance component or the

gray-scale images which makes the inter-channel correla-

tion is neglected. Motivated by the characteristics of com-

pressed images, a 3-stage CNN based approach is proposed

in this paper, which can exploit most of the inter-channel

correlation to enhance the image quality at the decoder

side. Both objective and subjective evaluations show the no-

ticeable quality improvements compared to Better Portable

Graphics (BPG), the state-of-the-art image codec.

1. Introduction

Most of the modern lossy image and video codecs (e.g.

JPEG, BPG[1], H.264, HEVC) are block based. The com-

pressed images and videos often suffer from visible distor-

tion (e.g. block and ringing artifacts) for areas with rich

texture and sharp edges, especially when the bit-rate is rel-

atively low. For some video codecs, there are built-in filters

in the decoder to mitigate this problem. In HEVC, in-loop

filtering is adopted, including a deblocking filter (DBF) and

sample adaptive offset (SAO), to alleviate the block and

ringing artifacts, respectively. However, the results are still

not satisfactory when the bit-rate is low.

A number of approaches have been proposed to re-

duce these artifacts. Conventional approaches design fil-

ters based on image priors (Low-rank, non-local similarity,

sparse). But most of these priors are hand-crafted and not

optimal in some cases. With the success of convolutional

neural networks (CNN) in image processing, CNN based

algorithms have also been proposed. In [2], a compres-

sion artifacts reduction CNN (ARCNN) is proposed, which

can achieve significant improvement compared to conven-

tional approaches. In [3], a reconstruction network is pro-

posed, which can solve both super-resolution and enhance-

ment problems at the same time. In [7], a decoder-side

HEVC quality enhancement using a scalable CNN is pro-

posed, which can enhance the quality of Intra-frames and

Inter-frames with different sub-networks.

However, most of these approaches are exploiting only

spatial information, they are typically applied on the lumi-

nance component and the inter-channel correlation is not

exploited. In image and video compression, the YUV420

color format is usually adopted, based on the assumption

that the human visual system is not so sensitive to color

differences compared to brightness changes. When the de-

coded RGB images are obtained, usually the G channel has

the best quality, R and B have relatively low quality. In this

condition we take the BPG codec and the Kodak dataset

as an example to prove this statement. As shown in Fig.

1 and 2, for both Peak Signal-to-Noise Ratio (PSNR) and

Multi-Scale Structural Similarity (MS-SSIM), the G chan-

nel shows higher quality even when the bit-rate is low. And

for PSNR, when the bit-rate is higher, the gap is greater. For

YUV444 format, we observed similar results, but the gap is

smaller.

Based on these observations, and the inter-channel cor-

relations, both structurally and spectrally, in this paper, we

proposed a 3-stage CNN based approach to enhance the im-

age quality. First, since the G channel has higher quality,

a network is adopted to enhance the G channel using spa-

tial information. Then, because of the strong inter-channel

correlations, the enhanced G values are used to guide the

enhancement of R and B separately in the second stage. Fi-

nally, the three channels are concatenated together and en-

hanced jointly in the third stage.

The major contributions of this work can be summarized

as follows: First, the inter-channel correlation is exploited
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Figure 1. PSNR of R, G and B (BPG, YUV420, Kodak dataset)

Figure 2. MS-SSIM of R, G and B (BPG, YUV420, Kodak dataset)

to enhance the quality of the decoded image. Second, a 3-

stage structure is used, the image quality is enhanced stage

by stage. Third, the proposed scheme is a post-processing

approach and hence compatible with existing standard im-

age and video codecs, which makes the approach applicable

in practice.

2. Proposed scheme

In image and video compression, YUV420 is the most

commonly used format. The U and V components are

down-sampled both horizontally and vertically. This leads

to the aforementioned characteristics of compressed images

when transformed back to RGB domain. The R, G, and

B channels exhibit strong inter-channel correlation, both

structurally and spectrally, which means that the samples

from other channels can be used to enhance the quality of

the current channel. Based on these characteristics, we pro-

pose the 3-stage CNN structure shown in Fig. 3 for image

quality enhancement.

First, the compressed image is decoded with a standard

image codec. The first stage is designed to reconstruct

the G channel. The DecodedImage is split into InputR,

InputG and InputB, and the InputG is fed into the first

stage. Then, the output of the first stage IntermediateG is

concatenated with InputR and InputB, respectively, and

fed into the second stage. The second stage is designed to

explore the correlations between R/G and G/B, using the

high-quality IntermediateG to guide the reconstruction of

R and B. Using two separate networks in the second stage to

reconstruct R/G and G/B is motivated by the differences in

the inter-channel correlation of R/G and G/B. Two separate

networks can better model and make the most of the inter-

channel correlations. In the third stage, we concatenate the

obtained intermediate R, G, B data, as the input of the third

stage, where the inter-channel correlations are further ex-

ploited. Finally, the enhanced images are obtained from the

third stage. The residual learning structure from [4] is used

for each stage to boost the learning process.

Fig. 4 shows the detailed structure of the network unit

for each stage. In the first layer, 128 filters of size 3 × 3 ×
d are used to generate feature maps, the last convolutional

layer adopts d filters of size 3 × 3 × 128 to generate the

corresponding output. For the hidden layers, 128 filters of

size 3 × 3 × 128 are adopted. The number of the layers in

each unit K is set to 5 and d is set to 1, 2, 3 in the three

stages, respectively. Stride is set to 1, and zero-padding of

size 1 is used to ensure that each feature map has the same

size as the input.

Consider the training dataset (Xi,Yi)
N
i=1

, where Xi is

the i-th decoded compressed image, Yi is the correspond-

ing ground-truth RGB image, and N is the number of im-

ages in the training data. During training, a loss function

is defined to optimize the parameters of the networks. As

shown in Fig. 3, four losses are defined for the proposed

scheme. In the first stage, LG is defined for the G channel.

In the second stage, two loss functions LRG and LGB are

defined since R/G and G/B are processed separately. In the

third stage, LRGB is defined as the loss for all three chan-

nels. The mean squared error (MSE) function is used as

the loss function and the overall loss function used during

training is defined as follows.

L(ω1, ω21,ω22, ω3) =
1

4
(LG(ω1) + LRG(ω1, ω21)+

LGB(ω1, ω22) + LRGB(ω1, ω21, ω22, ω3))

L(ω) =
1

N

N∑

i=1

(‖F(Ii;ω)−Oi‖
2)

(1)

where ωj are the corresponding network parameters of the

j-th stage. Ii and F(Ii;ω) are the i-th input and output of

each stage, and Oi is the corresponding ground-truth.

We also implemented a lite-version for complexity rea-

sons. In this version, we simplify the model to 2-stage by

removing the second stage. The first stage is for the G re-

construction, the RGB are reconstructed jointly in the sec-

ond stage. We set the number of the feature maps to 64.
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Figure 3. Structure of the proposed 3-stage CNN scheme

Figure 4. Structure of Network Unit

Other settings are the same as the 3-stage model. The lite-

version is much faster than the 3-stage version, a detailed

performance comparison will be presented in Section III.

3. Experiments and results

The provided training dataset is adopted in our experi-

ments as training data. In this dataset, there are 1633 nat-

ural images of various scenes shot by mobile devices and

professional cameras. We randomly pick 1000 images for

the training dataset. The BPG codec is used to generate the

compressed images. The quantization parameter (qp) is set

to 38 due to the bit-rate constraint, jctvc option is enabled

to achieve the best compression results, the level is set to 9.

The patch size is set to 50 × 50, and the patches are non-

overlapped. The mini-batch size is set to 64. The weights of

the networks are initialized according to [4] and the Adam

solver is used to optimize the parameters. The starting

learning rate is 0.001, and divided by 5 every 5 epochs.

There are 30 epochs in total. Other hyper-parameters are us-

ing the default settings from [5]. The training is performed

using Matlab(2018a) with the Matconvnet [6] toolbox.

First, two example images from the validation dataset

are shown in Fig. 5 to show the visual quality of the pro-

posed method. Usually the texture-rich and sharp edge

area are the challenging cases. We zoom in the tree part

of the ‘philipp-reiner-207’ and the football player of the

‘IMG 20161023 122645’ from the given validation dataset.

It can be seen that for BPG compression, block artifacts,

false-color pixels and shadows can be observed along the

edges of the trees and the football player. With the proposed

method, for both the 2-stage and 3-stage version, these ar-

tifacts can be well eliminated and the visual quality is im-

proved. The 3-stage approach leads to better image quality

than the 2-stage.

The average PSNR, composite PSNR (CPSNR) and MS-

SSIM are adopted to evaluate the objective quality of the

proposed approaches. A weighted PSNR is also adopted

in this challenge, which computes a single Mean Squared

Error (MSE) value by averaging across all RGB channels of

all pixels of the whole dataset. From that value calculates a

PSNR value, which is marked as the WPSNR in the table.

The results are listed in Table 1. They are all under the

constraint 0.15bpp required by the challenge.

Table 1. PSNR (in dB) and MS-SSIM results for the proposed 3-

stage approach on the validation dataset

Evaluation BPG Ours-2stage Ours-3stage

PSNR-R 31.22 31.85 31.94

PSNR-G 32.25 32.75 32.81

PSNR-B 30.98 31.78 31.90

CPSNR 31.43 32.08 32.17

WPSNR 30.85 31.48 31.57

MS-SSIM 0.948 0.954 0.955

From the results, it can be seen that the proposed 2-stage

and 3-stage methods lead to 0.6-0.7dB PSNR and 0.006-

0.007 MS-SSIM improvements on the validation datasets

in comparison to the BPG baseline with default settings. In

terms of the PSNR of each color component, the G channel

has about 0.5dB improvement, which proves that the first

stage works, the improvements of R and B are 0.7dB and

0.9dB, higher than that of G, which proves the rationality
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(a) Ground Truth (PSNR / SSIM) (b) BPG (33.21dB / 0.9140) (c) 2-stage (33.63dB / 0.9346) (d) 3-stage (33.68dB / 0.9375)

(e) Ground Truth (PSNR / SSIM) (f) BPG (33.46dB / 0.9584) (g) 2-stage (33.68dB / 0.9635) (h) 3-stage (33.83dB / 0.9648)

Figure 5. Visual Quality Comparison (Best seen on a computer monitor)

and effectiveness of the proposed network.

4. CLIC2018 Image Compression Challenge

This approach is proposed for the CLIC2018 challenge.

We submitted two versions of our decoder to the evaluation

server, the 2-stage version and the 3-stage version. The 2-

stage version is about five times faster than the 3-stage ver-

sion, but the 3-stage version achieves the better quality. The

BPG decoder is implemented by python binding with the

shared objects libbpg.so compiled from BPG source code.

The enhancement network is implemented with Tensorflow

and the saved network parameters. Because the evalua-

tion server provides only CPU, the Tensorflow is running

in CPU mode. We also notice that the running time on the

evaluation server is much longer than that on the local ma-

chine. For the 2-stage version, we need about 1500 seconds

(i7-4770 CPU and 8GB RAM) for all 102 images locally,

but it took more than 2 hours (2 CPUs, 8GB RAM and 8GB

Swap) on the server. For the 3-stage version, it is the same

situation. This may be caused by high load of the server

or the resource assignment strategy of Tensorflow when the

hardware configuration is different. For encoding, we use

the standard BPG encoder compiled from the source code

to encode all the images to the compressed format. Because

there’s an overall bit-rate constraint, 0.15bpp, for simplicity,

we set the qp to 38 for all the images.

5. Conclusion

This paper presents a 3-stage CNN-based decoder side

image enhancement scheme. The first stage is used to en-

hance the G channel by using the spatial information. The

second and the third stage are used to exploit the inter-

channel correlation. They use the enhanced G to guide

the enhancement of R and B. The experimental results on

both validation and test datasets show that the proposed

scheme leads to noticeable improvements compared to the

BPG baseline. Also, the proposed method is built on top of

the standard image codec, which makes that it is compati-

ble with any existing image codec. As a part of the future

work, we will investigate the potential gains applying the

proposed scheme to video codecs.
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