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Abstract

Wavelet compression schemes such as JPEG2000 may
lead to very specific visual artifacts due to quantization
of noisy wavelet coefficients. These artifacts have highly
spatially-correlated structure, making it difficult to be re-
moved with standard denoising algorithms. In this work,
we propose a joint denoising and decompression method
that combines a data-fitting term, which takes into account
the quantization process, and an implicit prior learnt using
a state-of-the-art denoising CNN.

1. Introduction

Transform coding image compression consists of apply-
ing a linear invertible transform that sparsifies the data (like
block-wise DCT for JPEG compression or a Wavelet Trans-
form in JPEG2000) followed by quantization of the trans-
formed coefficients, which are finally compressed by a loss-
less encoder. This family of compression schemes may
achieve very high compression ratios but may lose some
details in the quantization step. This lossy quantization is
also responsible for well-known artifacts that may appear in
the compressed image in the form of texture loss or Gibbs
effects near edges. Many solutions have been proposed in
the literature to remove some of these artifacts. Most of
them are variational and involve the minimization of the
total variation (to minimize ringing) over all images that
would lead to the observed quantized image [0, 3, 15].

Surprisingly, little attention has been paid in previous
works to the fact that the image to be compressed may con-
tain noise, and that noise may interact in subtle ways with
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the compressor, producing new kinds of artifacts that we
call outliers (see Figure 1). These artifacts cannot be re-
moved by the previously cited works, which only aim at
removing compression artifacts but not noise or its complex
interactions with the compressor. However, such artifacts
are particularly annoying in the case of wavelet-based com-
pressors like JPEG2000 and the CCSDS recommendation
[8], which are extensively used to compress digital cinema
and high-resolution remote sensing images.

More recently, joint denoising and decompression proce-
dures have been considered to remove both artifacts due to
the compressor and its interaction with noise. Such meth-
ods use either TV regularization or patch-based Gaussian
models in combination with relaxed versions of the quanti-
zation constraint, in order to take the effects of noise into ac-
count [7, 12, 13]. However the TV based approaches could
only reliably remove isolated outliers in relatively constant
areas, and patch-based approaches could only marginally
improve the performance of standard denoising techniques
like Non-Local Bayes [10].

In this work we propose a novel method for joint de-
noising and decompression. Our method uses a probabilis-
tic data-fitting term based on the formation model of noisy
compressed images presented in Section 2, coupled with
a CNN-based regularization which captures natural image
statistics more closely than previously reported patch-based
methods. The proposed method is described in Section 3.
The rest of the paper includes numerical implementation
details (Section 4) and experimental results (Section 5).

2. Modeling Noisy Compressed Coefficients

We assume that our image w is corrupted by additive
white Gaussian noise n,, ~ N(0,0%I)." The first step of
the CCSDS compression applies a wavelet transform W to
the noisy image. Hence the corresponding wavelet coeffi-

! Even though sensors usually produce a mixture of additive and multi-
plicative noise [ |, ch2], a variance stabilizing transform is usually applied
before compression, making our noise model a valid approximation.
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Figure 1: Above: When the noise n(k) added to a coeffi-
cient w(k) changes its quantization interval, we get an out-
lier, and the noise may be amplified. Below: as g(k)/o
varies, the noise is heterogeneous. This heterogeneity is
well captured by our datafit term, contrarily to the L? norm.

cients are corrupted by Gaussian noise

n=W(u+n,) —W(u) = Wny, ~ N0,?WWT).
—_———

Wy, w

If the wavelet transform was orthogonal, then WWT =71
and n would be white. Most compression algorithms use,
however, the CDF 9/7 biorthogonal wavelet transform [5],
but even in that case it can be seen that WIW7 ~ Jis a
good approximation [2]. Each wavelet coefficient is then
quantized by setting to 0 its m(k) least significant bits:

Qun (k) = s, (1) | 122 270
The values of m(k) are chosen by the compression algo-
rithm to optimize the rate/distortion trade-off, and can be
recovered from the compressed image. From these values
we can recover the quantization intervals Q' (wy, (k) =
[ak, by)?, as well as their centers Q~!(wy(k)). The stan-
dard decoder yields

Ugn = W wg, = W Q-1Q(w + n).
Q

As illustrated in Figure 2, wg,, may be corrupted by out-
liers due to the interaction between n and the codec Q. To
understand why this occurs consider the situation depicted
in Figure 1. If there was no noise we would obtain the
quantized coefficients w, := Q(w). When the noise level
o < q(k) is relatively small, the noisy quantized coeffi-
cient wy, = Q(w + n) is most often equal to w,, and
the quantizer has a denoising effect. However, occasionally

2 of length g(k) = 2(¥), except for the case Q(w, (k)) = 0 where
the quantization interval is of length ¢(k) = om(k)+1,

the noise may be large enough to change the quantization
interval. In that case quantization may amplify the noise
Ing| = |wgn — wg| > |w, —w| = |n|, and we get a visible
(wavelet shaped) artifact that we call an outlier. Outliers
are particularly annoying when they are isolated. When the
noise level o 2 ¢(k) is similar to or larger than the quanti-
zation level then outliers occur everywhere and they appear
indistinguishable from white noise.

In the next section we propose a Bayesian approach
to estimate the original image v from its noisy, quantized
observation. The datafit term will be formulated in the
wavelets domain; this is the natural choice since quantiza-
tion is performed on this domain.

3. Proposed restoration method
3.1. Motivation via MAP estimation

The Maximum A Posteriori (MAP) estimation of the non-
degraded image u knowing its degraded version ug, is
stated as

@ = arg mgxp(u|uqn) = arg msxp(uqn\u)p(u) (1)
= arg min{— log(p(ugn|u)) —log(p(u))}, )

where « is the MAP estimator of . Finding @ amounts to
solve the optimization problem

@ = arg muln{D(u) + AR(u)}, 3)

where D(u) is a data-fitting term that depends on the for-
ward operator and the noise model, R is the regularization
(— log(prior)) to be used in the restoration, and the parame-
ter A > 0 is the strength of the regularization.

3.2. Data fitting

Let w = Wwu be the coefficients of the original (un-
known) image, and wy, = Wug, the wavelet coefficients
of the corrupted image. As stated before, the quantization
intervals of each of these coefficients can be retrieved as
[ak,bk] = QY (wgn(k)) = Q  (wgn(k)). Using this no-
tation, and given that the noise in the wavelet domain is
N(0,02I) (Section 2), the conditional probability of the

corrupted coefficients given the original ones is

p(wgnlw = w) = [ pwan (k) (k) = w(k)) @)
k

= [[p@w(k) + n(k) = wgu(k)) ()
k

= [T p(wk) +n(k) € [ax, be)) ©)
k

_ n(k) [a —w(k) by —w(k)
I ("7 e [ )
@)
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In the following we consider the log-likelihood function

D(w) = —log p(wgn|w = w) (8)
S zk:log (¢ (bk —;u(k)) —¢ <ak —:(k))) :
)

where ¢ is the normal cumulative distribution function.
This data term in the wavelet domain carefully takes into ac-
count the quantization process of the coefficients. Although
this term is not quadratic as in most inverse problems, it is
convex and we have an analytic expression for its gradient
and its Hessian matrix [17].

3.3. Minimization with ADMM

Finally, problem (3) can be written as

min{D(w) + AR(u)} st. Whw = u,

where W1 is the inverse wavelet transform (synthesis).
The ADMM algorithm [4] becomes (subscripts indicate the
iteration number):

. _ 1
wiy1 = argmin D(w) + gHW L — uy, + ;ka2
w
. _ 1
g1 = argmin AR(u) + gHW Ywpir —u+ ;ka2
u

Y1 = Y + p(W wp1 — wpes).-

(10)
3.4. Regularizing by denoising
The second subproblem can be rewritten as
1 . 1 ?
U1 = argtwnln m H(W Wra1 + ;yk) —u|| +R(u).

This step can be seen as a Gaussian denoising of
W= wgi1 + %yk with noise variance 0 = X\/p. The
solution can be computed using a good denoiser G as the
proximal operator of an implicit prior R(u) [11]:

_ 1
Upy1 = GW wpgy + P o = A/p).

4. Numerical implementation

For the first subproblem in (10), let v = —ug + %yk,
then define F(w) := D(w) + §||W ™ w + v||?. The first
and second derivatives of F'(w) are given by

VF(w) = VD(w)+ pW T(W 1w +v)
V2F(w) = V2D(w) + pWTW 1.

As pointed out before, for the CDF9/7 the term WWT can
be fairly approximated by the identity matrix I, yielding

V2F(w) ~ V2D(w) +p I.

| Image | PSNR | SSIM | NLP |
Corrupted (0 = 4, 2 BPP) | 35.92 [ 0.8320 | 5.28
WNLB [13] 36.67 | 0.8537 | 30.70
Zhang et al. [16] 39.59 | 09169 | 6.39
Ours 39.52 | 0.9241 | 2.95

Table 1: Results. For PSNR and SSIM, higher is better. For
NLP, lower is better.

Now, since D(w) is separable in terms of the elements w (k)
of w, it follows that V2D (w) is a diagonal matrix. It is also
positive definite, since function D(w) is strictly convex>. It
follows that V2 F(w) is a diagonal, positive definite matrix,
and therefore the minimization of F'(w) can be computed
very efficiently using a Newton method.

Finally, the second subproblem in (10) can be computed
by means of a Gaussian denoiser, as described in Sec-
tion 3.4. We choose G to be the residual network of Zhang
et al. [16], which is state of the art in Gaussian denoising.

5. Results and Conclusions

Figure 2 illustrates the artifacts that result from noisy
compressed images, and compares different restoration
methods. The original image was corrupted with white
Gaussian noise of ¢ = 4, then compressed at 2 BPP us-
ing the CCSDS compressor. Two different phenomena can
be distinguished in the noisy compressed image: a loss of
details resulting from wavelet coefficients truncation, and
wavelet shaped artifacts resulting from wavelet coefficients
outliers. In regions where the variable quantization step
q(k) is such that o > ¢(k), most wavelet coefficients actu-
ally become outliers and the structure is very close to white
Gaussian noise. In this case, the Gaussian denoiser [ 16] and
our method exhibit similar performances. However, on the
other side, when o < ¢(k) the wavelet shaped artifacts be-
come more isolated and the degradation strongly deviates
from white Gaussian noise. In this case, [16] cannot get its
full potential and many of these artifacts are not removed,
while our method performs particularly well.

Table 1 presents a quantitative analysis of the proposed
approach by comparing its corresponding PSNR, SSIM [ 14]
and NLP [9] to those of WNLB and [16]. Even though [16]
exhibits slightly better PSNR, our method performs the best
in the other two subjective quality indices, which is consis-
tent quality evaluation by visual inspection, which shows
that the proposed approach removes more outliers while
better preserving image details.

31t can be shown that when o < ¢, or when the w(k) are far from their
interval bounds, the inversion of V2 D(w) is ill-conditioned. However, the
matrix to be inverted is V2 F'(w), a regularized version of V2D (w).
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(d) WNLB [13]

(b) Original (detail)

(c) Noisy compressed, 0 = 4, BPP =2

(e) Zhang et al. [16]

Figure 2: Top: original and noisy compressed images. Below: results of three restoration methods. Dynamic range has been
saturated for better visualization.
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