

Joint denoising and decomposition using CNN regularization

Mario González^{*1}, Javier Preciozzi¹, Pablo Musé¹, and Andrés Almansa²

¹IIE-FING, Universidad de la República, Uruguay

²CNRS & MAP5, Université Paris Descartes, France

Abstract

Wavelet compression schemes such as JPEG2000 may lead to very specific visual artifacts due to quantization of noisy wavelet coefficients. These artifacts have highly spatially-correlated structure, making it difficult to be removed with standard denoising algorithms. In this work, we propose a joint denoising and decomposition method that combines a data-fitting term, which takes into account the quantization process, and an implicit prior learnt using a state-of-the-art denoising CNN.

1. Introduction

Transform coding image compression consists of applying a linear invertible transform that sparsifies the data (like block-wise DCT for JPEG compression or a Wavelet Transform in JPEG2000) followed by quantization of the transformed coefficients, which are finally compressed by a lossless encoder. This family of compression schemes may achieve very high compression ratios but may lose some details in the quantization step. This lossy quantization is also responsible for well-known artifacts that may appear in the compressed image in the form of texture loss or Gibbs effects near edges. Many solutions have been proposed in the literature to remove some of these artifacts. Most of them are variational and involve the minimization of the total variation (to minimize ringing) over all images that would lead to the observed quantized image [6, 3, 15].

Surprisingly, little attention has been paid in previous works to the fact that the image to be compressed may contain noise, and that noise may interact in subtle ways with

^{*}mgonzalez@unorte.edu.uy

This work has been partially funded by the Uruguayan Research and Innovation Agency (ANII) under grant number (FCE_1_2017_1_135458), by the French-Uruguayan cooperation program under grant number ECOS Sud U17E04, by France's Eiffel Scholarship Program of Excellence under grant number 895184E, and by the French Research Agency (ANR) under grant number ANR-14-CE27-001 (MIRIAM).

the compressor, producing new kinds of artifacts that we call *outliers* (see Figure 1). These artifacts cannot be removed by the previously cited works, which only aim at removing compression artifacts but not noise or its complex interactions with the compressor. However, such artifacts are particularly annoying in the case of wavelet-based compressors like JPEG2000 and the CCSDS recommendation [8], which are extensively used to compress digital cinema and high-resolution remote sensing images.

More recently, joint denoising and decomposition procedures have been considered to remove both artifacts due to the compressor and its interaction with noise. Such methods use either TV regularization or patch-based Gaussian models in combination with relaxed versions of the quantization constraint, in order to take the effects of noise into account [7, 12, 13]. However the TV based approaches could only reliably remove isolated outliers in relatively constant areas, and patch-based approaches could only marginally improve the performance of standard denoising techniques like Non-Local Bayes [10].

In this work we propose a novel method for joint denoising and decomposition. Our method uses a probabilistic data-fitting term based on the formation model of noisy compressed images presented in Section 2, coupled with a CNN-based regularization which captures natural image statistics more closely than previously reported patch-based methods. The proposed method is described in Section 3. The rest of the paper includes numerical implementation details (Section 4) and experimental results (Section 5).

2. Modeling Noisy Compressed Coefficients

We assume that our image u is corrupted by additive white Gaussian noise $n_u \sim N(0, \sigma^2 I)$.¹ The first step of the CCSDS compression applies a wavelet transform W to the noisy image. Hence the corresponding wavelet coeffi-

¹ Even though sensors usually produce a mixture of additive and multiplicative noise [1, ch2], a variance stabilizing transform is usually applied before compression, making our noise model a valid approximation.

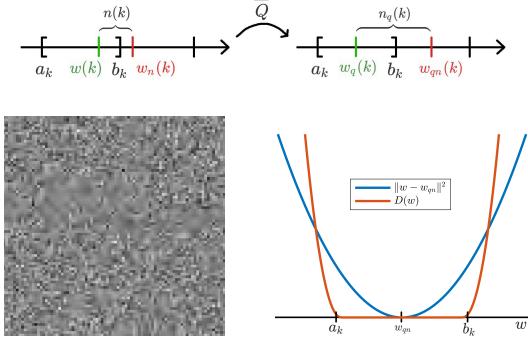


Figure 1: Above: When the noise $n(k)$ added to a coefficient $w(k)$ changes its quantization interval, we get an *outlier*, and the noise may be amplified. Below: as $q(k)/\sigma$ varies, the noise is heterogeneous. This heterogeneity is well captured by our datafit term, contrarily to the L^2 norm.

clients are corrupted by Gaussian noise

$$n := \underbrace{W(u + n_u)}_{w_n} - \underbrace{W(u)}_w = Wn_u \sim N(0, \sigma^2 WW^T).$$

If the wavelet transform was orthogonal, then $WW^T = I$ and n would be white. Most compression algorithms use, however, the CDF 9/7 *biorthogonal* wavelet transform [5], but even in that case it can be seen that $WW^T \simeq I$ is a good approximation [2]. Each wavelet coefficient is then quantized by setting to 0 its $m(k)$ least significant bits:

$$Q(w_n(k)) := \text{sign}(w_n(k)) \left\lfloor \frac{|w_n(k)|}{2^{m(k)}} \right\rfloor 2^{m(k)}.$$

The values of $m(k)$ are chosen by the compression algorithm to optimize the rate/distortion trade-off, and can be recovered from the compressed image. From these values we can recover the quantization intervals $Q^{-1}(w_n(k)) = [a_k, b_k]$ ², as well as their centers $\bar{Q}^{-1}(w_n(k))$. The standard decoder yields

$$u_{qn} := W^{-1}w_{qn} = W^{-1} \underbrace{\bar{Q}^{-1}Q}_{\bar{Q}}(w + n).$$

As illustrated in Figure 2, w_{qn} may be corrupted by *outliers* due to the interaction between n and the codec \bar{Q} . To understand why this occurs consider the situation depicted in Figure 1. If there was no noise we would obtain the quantized coefficients $w_q := \bar{Q}(w)$. When the noise level $\sigma \ll q(k)$ is relatively small, the noisy quantized coefficient $w_{qn} := \bar{Q}(w + n)$ is most often equal to w_q , and the quantizer has a denoising effect. However, occasionally

² of length $q(k) = 2^{m(k)}$, except for the case $Q(w_n(k)) = 0$ where the quantization interval is of length $q(k) = 2^{m(k)+1}$.

the noise may be large enough to change the quantization interval. In that case quantization may amplify the noise $|n_q| = |w_{qn} - w_q| > |w_n - w| = |n|$, and we get a visible (wavelet shaped) artifact that we call an *outlier*. Outliers are particularly annoying when they are isolated. When the noise level $\sigma \gtrsim q(k)$ is similar to or larger than the quantization level then outliers occur everywhere and they appear indistinguishable from white noise.

In the next section we propose a Bayesian approach to estimate the original image u from its noisy, quantized observation. The datafit term will be formulated in the wavelets domain; this is the natural choice since quantization is performed on this domain.

3. Proposed restoration method

3.1. Motivation via MAP estimation

The *Maximum A Posteriori* (MAP) estimation of the non-degraded image u knowing its degraded version u_{qn} is stated as

$$\hat{u} = \arg \max_u p(u|u_{qn}) = \arg \max_u p(u_{qn}|u)p(u) \quad (1)$$

$$= \arg \min_u \{-\log(p(u_{qn}|u)) - \log(p(u))\}, \quad (2)$$

where \hat{u} is the MAP estimator of u . Finding \hat{u} amounts to solve the optimization problem

$$\hat{u} = \arg \min_u \{D(u) + \lambda R(u)\}, \quad (3)$$

where $D(u)$ is a data-fitting term that depends on the *forward* operator and the noise model, R is the regularization ($-\log(\text{prior})$) to be used in the restoration, and the parameter $\lambda > 0$ is the strength of the regularization.

3.2. Data fitting

Let $w = Wu$ be the coefficients of the original (unknown) image, and $w_{qn} = Wu_{qn}$ the wavelet coefficients of the corrupted image. As stated before, the quantization intervals of each of these coefficients can be retrieved as $[a_k, b_k] = Q^{-1}(w_{qn}(k)) = \bar{Q}^{-1}(w_{qn}(k))$. Using this notation, and given that the noise in the wavelet domain is $N(0, \sigma^2 I)$ (Section 2), the conditional probability of the corrupted coefficients given the original ones is

$$p(w_{qn}|w = \omega) = \prod_k p(w_{qn}(k)|w(k) = \omega(k)) \quad (4)$$

$$= \prod_k p(\bar{Q}(\omega(k) + n(k)) = w_{qn}(k)) \quad (5)$$

$$= \prod_k p(\omega(k) + n(k) \in [a_k, b_k]) \quad (6)$$

$$= \prod_k p\left(\frac{n(k)}{\sigma} \in \left[\frac{a_k - \omega(k)}{\sigma}, \frac{b_k - \omega(k)}{\sigma}\right]\right). \quad (7)$$

In the following we consider the log-likelihood function

$$D(\omega) = -\log p(w_{qn}|w = \omega) \quad (8)$$

$$= -\sum_k \log \left(\phi \left(\frac{b_k - \omega(k)}{\sigma} \right) - \phi \left(\frac{a_k - \omega(k)}{\sigma} \right) \right), \quad (9)$$

where ϕ is the normal cumulative distribution function. This data term in the wavelet domain carefully takes into account the quantization process of the coefficients. Although this term is not quadratic as in most inverse problems, it is convex and we have an analytic expression for its gradient and its Hessian matrix [17].

3.3. Minimization with ADMM

Finally, problem (3) can be written as

$$\min_{w,u} \{D(w) + \lambda R(u)\} \quad \text{s.t. } W^{-1}w = u,$$

where W^{-1} is the inverse wavelet transform (synthesis). The ADMM algorithm [4] becomes (subscripts indicate the iteration number):

$$\begin{cases} w_{k+1} = \underset{w}{\operatorname{argmin}} \ D(w) + \frac{\rho}{2} \|W^{-1}w - u_k + \frac{1}{\rho} y_k\|^2 \\ u_{k+1} = \underset{u}{\operatorname{argmin}} \ \lambda R(u) + \frac{\rho}{2} \|W^{-1}w_{k+1} - u + \frac{1}{\rho} y_k\|^2 \\ y_{k+1} = y_k + \rho(W^{-1}w_{k+1} - u_{k+1}). \end{cases} \quad (10)$$

3.4. Regularizing by denoising

The second subproblem can be rewritten as

$$u_{k+1} = \underset{x}{\operatorname{argmin}} \ \frac{1}{2(\lambda/\rho)} \left\| (W^{-1}w_{k+1} + \frac{1}{\rho} y_k) - u \right\|^2 + R(u).$$

This step can be seen as a *Gaussian denoising* of $W^{-1}w_{k+1} + \frac{1}{\rho} y_k$ with noise variance $\sigma_{\mathcal{G}}^2 = \lambda/\rho$. The solution can be computed using a good denoiser \mathcal{G} as the proximal operator of an *implicit prior* $R(u)$ [11]:

$$u_{k+1} = \mathcal{G}(W^{-1}w_{k+1} + \frac{1}{\rho} y_k), \quad \sigma_{\mathcal{G}}^2 = \lambda/\rho.$$

4. Numerical implementation

For the first subproblem in (10), let $v = -u_k + \frac{1}{\rho} y_k$, then define $F(w) := D(w) + \frac{\rho}{2} \|W^{-1}w + v\|^2$. The first and second derivatives of $F(w)$ are given by

$$\nabla F(w) = \nabla D(w) + \rho W^{-T} (W^{-1}w + v)$$

$$\nabla^2 F(w) = \nabla^2 D(w) + \rho W^{-T} W^{-1}.$$

As pointed out before, for the CDF9/7 the term WW^T can be fairly approximated by the identity matrix I , yielding

$$\nabla^2 F(w) \simeq \nabla^2 D(w) + \rho I.$$

Image	PSNR	SSIM	NLP
Corrupted ($\sigma = 4$, 2 BPP)	35.92	0.8320	5.28
WNLB [13]	36.67	0.8537	30.70
Zhang et al. [16]	39.59	0.9169	6.39
Ours	39.52	0.9241	2.95

Table 1: Results. For PSNR and SSIM, higher is better. For NLP, lower is better.

Now, since $D(w)$ is separable in terms of the elements $w(k)$ of w , it follows that $\nabla^2 D(w)$ is a diagonal matrix. It is also positive definite, since function $D(w)$ is strictly convex³. It follows that $\nabla^2 F(w)$ is a diagonal, positive definite matrix, and therefore the minimization of $F(w)$ can be computed very efficiently using a Newton method.

Finally, the second subproblem in (10) can be computed by means of a Gaussian denoiser, as described in Section 3.4. We choose \mathcal{G} to be the residual network of Zhang et al. [16], which is state of the art in Gaussian denoising.

5. Results and Conclusions

Figure 2 illustrates the artifacts that result from noisy compressed images, and compares different restoration methods. The original image was corrupted with white Gaussian noise of $\sigma = 4$, then compressed at 2 BPP using the CCSDS compressor. Two different phenomena can be distinguished in the noisy compressed image: a loss of details resulting from wavelet coefficients truncation, and wavelet shaped artifacts resulting from wavelet coefficients outliers. In regions where the variable quantization step $q(k)$ is such that $\sigma > q(k)$, most wavelet coefficients actually become outliers and the structure is very close to white Gaussian noise. In this case, the Gaussian denoiser [16] and our method exhibit similar performances. However, on the other side, when $\sigma \ll q(k)$ the wavelet shaped artifacts become more isolated and the degradation strongly deviates from white Gaussian noise. In this case, [16] cannot get its full potential and many of these artifacts are not removed, while our method performs particularly well.

Table 1 presents a quantitative analysis of the proposed approach by comparing its corresponding PSNR, SSIM [14] and NLP [9] to those of WNLB and [16]. Even though [16] exhibits slightly better PSNR, our method performs the best in the other two subjective quality indices, which is consistent quality evaluation by visual inspection, which shows that the proposed approach removes more outliers while better preserving image details.

³It can be shown that when $\sigma \ll q$, or when the $w(k)$ are far from their interval bounds, the inversion of $\nabla^2 D(w)$ is ill-conditioned. However, the matrix to be inverted is $\nabla^2 F(w)$, a regularized version of $\nabla^2 D(w)$.

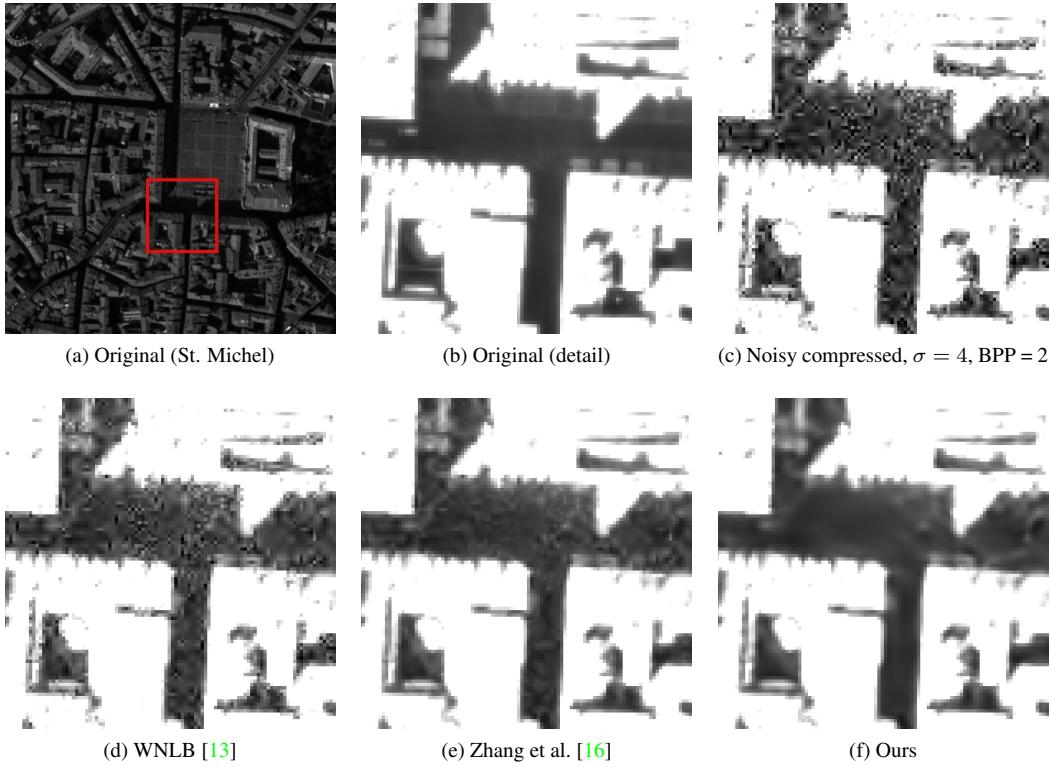


Figure 2: Top: original and noisy compressed images. Below: results of three restoration methods. Dynamic range has been saturated for better visualization.

References

- [1] C. Aguerrebere. *On the Generation of High Dynamic Range Images Theory and Practice from a Statistical Perspective*. Phd, Telecom ParisTech, 2014. [1](#)
- [2] J. Akhtar. Optimization of biorthogonal wavelet filters for signal and image compression. Master's thesis, Hovedoppgave, University of Oslo, 2001. [2](#)
- [3] F. Alter, S. Durand, and J. Froment. Adapted total variation for artifact free decompression of jpeg images. *JMIV*, 23:199–211, 2005. [1](#)
- [4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. 3(1):1–122, 2011. [3](#)
- [5] A. Cohen, I. Daubechies, and J. Feauveau. Biorthogonal bases of compactly supported wavelets. *Communications on Pure and Applied Mathematics*, 45(5):485–560. [2](#)
- [6] S. Durand and J. Froment. Reconstruction of wavelet coefficients using total variation minimization. *SIAM, Journal on Scientific Computing*, 24(5):1754–1767, 2003. [1](#)
- [7] S. Durand and M. Nikolova. Denoising of frame coefficients using ℓ^1 Data-Fidelity term and Edge-Preserving regularization. *SIAM Multiscale Modeling & Simulation*, 6(2):547–576, 2007. [1](#)
- [8] T. C. C. for Space Data Systems (CCSDS). Technical report, image data compression. 122.0-b-1, 2005. [\[URL\]](#). [1](#)
- [9] V. Laparra, J. Ballé, A. Berardino, and E. Simoncelli. Perceptual image quality assessment using a normalized laplacian pyramid. In B. Rogowitz, T. N. Pappas, and H. de Ridder, editors, *Proc. IS&T Int'l Symposium on Electronic Imaging, Conf. on Human Vision and Electronic Imaging*, volume 2016, pages 1–6, San Francisco, CA, 14–18 Feb 2016. Society for Imaging Science and Technology. [3](#)
- [10] M. Lebrun, A. Buades, and J.-M. Morel. A nonlocal bayesian image denoising algorithm. *SIAM Journal on Imaging Sciences*, 6(3):1665–1688, 2013. [1](#)
- [11] T. Meinhardt, M. Moeller, C. Hazirbas, and D. Cremers. Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging Problems. apr 2017. [3](#)
- [12] J. Preciozzi. *Two Restoration Problems In Satellite Imaging*. PhD thesis, Universidad de la República, 2016. [\[URL\]](#). [1](#)
- [13] J. Preciozzi, M. Gonzalez, A. Almansa, and P. Muse. Joint denoising and decompression: A patch-based Bayesian approach. In *ICIP*, pages 1252–1256. IEEE, sep 2017. [1](#)
- [14] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity. *IEEE Trans. Image Processing*, 13(4):600–612, 2004. [3](#)
- [15] P. Weiss, L. Blanc-Feraud, T. Andre, and M. Antonini. Compression artifacts reduction using variational methods : Algorithms and experimental study. In *ICASSP*, pages 1173–1176, March 2008. [1](#)
- [16] K. Zhang, W. Zuo, S. Gu, and L. Zhang. Learning deep cnn denoiser prior for image restoration. In *CVPR*, pages 3929–3938, 2017. [3, 4](#)
- [17] A. Zymnis, S. Boyd, and E. Candes. Compressed sensing with quantized measurements. *IEEE Signal Processing Letters*, 17(2):149–152, 2010. [3](#)