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Abstract

Deep learning, e.g., convolutional neural networks (C-

NNs), has achieved great success in image processing and

computer vision tasks like classification, detection and im-

age compression. We propose a method by combining

convolution neural networks and traditional compression

method. The prepositive compression comes from the S-

VAC2(which is drafted and maintained by VimicroAI and

China’s Ministry of Public Security) video codec. We fur-

ther improve the SVAC2 by adopting a recovering CNN net-

work after the reconstruction. Our approach outperform-

s JPEG/JPEG2000/WebP standards, and is equivalent to

BPG.

1. Introduction

Image/video comression is always a key technology in

different industrial and commercial market[1]. In recen-

t years, it attracts more interest because people founded that

deep natural network the intrinsic power to map any trans-

fer function, including image compress/decompress. So

DNN has the potential to replace or improve the current im-

age/video comression scheme. Image compression system-

s based on convolutional neural networks have become an

active area of research recently. The aim of image compres-

sion is to reduce redundancy of an image in order to store or

transmit the image at low bit rates. Although the end-to-end

CNN auto-encoder may have competitive performance for

the image compression, yet it has not exceeded the main-

stream image compression standards like jpeg2000/webP.

Our SVAC2 proposal does not only improve the traditional

codec method, but we also use a CNN network to filter the

image after SVAC2. Our framework takes advantage of S-

VAC2 and the CNN enhancement is optional, so it has much

better performance and compatibility.

1.1. Previous Work

There are many image codec standards such as JPEG,

WebP and BPG. WebP and BPG are based on the I frame

codec of VP8 by GOOGLE and HEVC seperately. A usu-

al image codec compress the image with one block as u-

nit, with block size from 16x16 to 64x64. Each block use

the same coding method including intra prediction, trans-

form coding, quantization coding, de-locking filter, entropy

coding and so on. BPG and WebP further use coding u-

nit tree instead of simple macro-block used in JPEG. Af-

ter reconstructing image, traditional image codec common-

ly improve the quality of decoded images by using post-

processing techniques, which can be roughly categorized

into de-blocking oriented and restoration oriented method-

s. The de-blocking oriented methods focus on removing

blocking and ringing artifacts of the decoded images.

On the other side, auto-encoder has been used to reduce

the dimensionality of images [2], convert images to com-

pressed binary codes for retrieval [3], and to extract com-

pact visual representations that can be used in other appli-

cations. Further, deep learning has been used both for lossy

and lossless image compression and achieved competitive

performance. For the lossy image compression Google pro-

posed a fully deep learning architecture based on convolu-

tional and de-convolutional LSTM recurrent networks.

2. The Proposed Compression Methods

In this section, we first introduce the architecture of the

proposed method. Firstly the improved algorithms of S-

VAC2 in the traditional side and then the detailed CNNs

architecture. With the raw input image in RGB channels,

we transfer it into yuv420 format, and then encode to bit-

streams with SAVC2 encoder. After reconstructing the yu-

v420 data by the SVAC2 decoder, we use a CNN network

to filter only the Y data. Finally after interpolation chroma

u/v, we get yuv444 data and transform it into the RGB data

for PNG packing.
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2.1. SVAC2 image codec introduction

As shown in Fig.1, SVAC2 I-frame encoder framework

consists of intra prediction, transform coding, quantization

coding, de-locking filter, entropy coding as same as other

mainstream codec architecture. The codec can be split in

two major parts: 1) encoder, 2) decoder. Codec a I frame

follow the steps below:

Figure 1. SVAC2 codec compression framework

Step 1. Image is partitioned in to blocks of different sizes and

is known as coding tree unit(CTU).

Step 2. Each unit is predicted by intra-frame prediction. The

result of prediction process is subtracted from the pic-

ture block[4].

Step 3. The residual is transformed mostly by Discrete Cosine

Transform(DCT) and quantized. Finally, transformed

output, prediction information, mode information and

headers are encoded by entropy encoder.

Step 4. At decoder side every counter part of encoder blocks

does the inverse operation to deliver the picture to the

other end of the communication.

2.2. SVAC2 multi-scale residual encoding

We introduced a innovative encoding scheme in SVAC2,

which has two encode modes : The normal mode, en-

code the whole image as a intra frame(I frame). The sec-

ond mode called multi-scale residual encoding, as shown

in Fig.2. This mode firstly encode a small image which

is 1/2(1/4,1/8optional) down-scaled from the original one,

as a I-frame. Then encode the original image as a inter

frame(P frame), with the former small image up-scaled as

the reference frame. So the second frame actually encode

the residues between original image and up-scaled frame.

Figure 2. SVAC2’s multi-scale residual encoding scheme

3. Reconstruction Frame Filtering With CNNs

Let’s denote lumina of the SVAC2 decoded image as Y.

The proposed CNN model focuses on learning the resid-

uals between the decoded Y and the ground truth lumina

X of source image. Our goal is to fit a mapping function

X≈F(Y)+Y that reverses image degradation due to SVAC2

codec as much as possible. We wish to learn the F by train-

ing a CNN, which conceptually consists of two operations

as shown in FIG.3. It has the feature extraction and im-

age detail’s reconstruction. The filter reconstruction frame

model is a fully CNN network that consists of a set of con-

volution layers and non-linear layers cascades. To extract

both the local and the global image features, all outputs of

the hidden layers are concatenated at the end of feature ex-

traction as skip connections from different layer domains.

After concatenating all of the features, reconstruction par is

used to reconstruct the image details. Input Y is fed into the

network, residual is output from the second last layer, final-

ly adding Y to form a F(Y)+Y function. The final addition

is inspired by Res-Net. The model has totally 11 layers.

For colored images, we first transform RGB to YUV.

And the reconstruction network is applied only on the lumi-

nance channel. The model is not specifically designed to be

an end-to-end solution. On the contrary, the proposed opti-

mizes an end-to-end mapping. It is faster at speed because

of less layers and channels. It is not only a quantitatively

superior method, but also a practically useful one.

3.1. Feature Extraction

The feature extraction part is responsible for extracting

hidden features of the SVAC2’s reconstructed image. It con-

sists of 7 consecutive 2d-convolution layers. Each layer can

be expressed as the equation:

E(Y ) = W ∗ Y +B

where W and B represent the filters and biases respec-

tively, and * denotes the convolution operation. Here, W

is a k×k×M×N matrix. k is convolution kernel size. M,N

is the numbers of input/output channels. B is a vector of

size N. E is the output feature maps of H×W×N dimen-
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Figure 3. CNN filter structure

sion where H,W is the feature map’s size. We use Relu as

activation function for each layer.

We optimize the number of filters at each layer. The

7 filters with output feature num N are as follows:

16,14,12,11,10,9,8. All filter kernel size is k=3. The con-

catenation concatenates all layers’ outputs, therefore the

channels num in concatenation is 80.

3.2. Image Detail Reconstruction

Because of all of the hidden features are concatenated at

the input layer of the reconstruction network, the dimension

of input data is rather large. So we mainly use 1x1 CNNs

to generate output residual pixels data, not only reduces

the dimensions of the previous layer for faster computation

with less information loss, but also adds more nonlinearity

to enhance the potential representation of the network[5].

The reconstruction network have three CNN filters:A1, B1,

B2,Fig.3. A1 use 1x1 CNNs and output channel number is

24, B1 use 1x1 CNNs and output channel number is 8 and

B2 use 3x3 CNNs and output channel is 8. The cascades

of B1/B2 is finally concatenates with output of A1, follow-

ing a 1x1 CNN as final mapping. It can been concluded

this branching method reach a compromise between size of

CNN kernel and number of features. Branch A1 is of small-

er 1x1 kernel but with more channels(24 here). Meanwhile

branch B1/B2 contains larger kernel(1x1 and 3x3 here) but

fewer channels(8 here). This arrangement balance the usage

of different receptive fields and computation requirements.

The output residual is then added with the original input

Y. Actually this is a typical residual learning networks, the

model is made to focus on learning residual output and this

greatly helps shorten the training time.

4. Training

The loss function we used is the MSE between input and

output. The formula is as:

Loss =
1

n

n∑

n=1

∥F (Y ) + Y −X∥2

where Y is the decoded luminance from SVAC2, F(Y)+Y

is the whole CNNs function, X is the unencoded luminance

and n is the training mini-batch size.

We constrain the size of the encoded CLIC2018 test im-

ages within the 13.3M limitation by qp48. So the train-

ing inputs are Y patches decoded by SVAC2 decoder using

qp48. All patches are cropped from CLIC2018 training set

plus BSD200[6], without overlapping. Patch size is 64x64.

Using MSE as the loss function favors a high PSNR. The

PSNR is a widely-used metric for quantitatively evaluating

image restoration quality, and is at least partially related to

the perceptual quality. We also found that more training

samples do not improve the performance.

5. Result and Discussion

As for validation data of CLIC2018, after submitting the

decoder, our PSNR result is 30.48 db. About 0.2 db is

contributed by the later CNN network. We found that all

images are PSNR boosted without exception while we use

reasonable additional computation resources. We will use

the similar techniques to replace or improve the SVAC2’s

multi-scale residual encoding(see section2.2) in the future.
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