This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

Learned Compression Artifact Removal by Deep Residual Networks

Ogun Kirmemis

Gonca Bakar

A. Murat Tekalp

Department of Electrical and Electronics Engineering, Koc University, 34450 Istanbul, Turkey
{okirmemisl6,gbakarl5, mtekalp}@ku.edu.tr

Abstract

We propose a method for learned compression artifact
removal by post-processing of BPG compressed images. We
trained three networks of different sizes. We encoded input
images using BPG with different QP values. We submitted
the best combination of test images, encoded with different
QP and post-processed by one of three networks, which sat-
isfy the file size and decode time constraints imposed by the
Challenge. The selection of the best combination is posed
as an integer programming problem. Although the visual
improvements in image quality is impressive, the average
PSNR improvement for the results is about 0.5 dB.

1. Introduction

The mainstream approach for lossy image compression
since 1980’s has been transform coding, using discrete co-
sine transform (DCT) or discrete wavelet transform (DWT)
for data decorrelation followed by uniform quantization and
entropy coding. The JPEG standard using the DCT has
been the most successful and widely deployed lossy image
compression technology. JPEG2000, which uses the DWT,
is the technology used by the motion picture industry for
frame by frame compression of movies.

Recently, the state of the art in lossy image coding has
shifted to the better portable graphics (BPG) codec [1],
which is also a transform coder derived from intra-frame
coding tools in the high-efficiency video coding (HEVC)
video coder. The royalty-free WebP codec, which is derived
from the intra-frame coding tools of the VP9 video coder,
also outperforms JPEG but is slightly inferior to BPG.

With the advent of deep learning, which led to significant
achievements in computer vision, there is growing interest
in applying end-to-end deep learning to image compres-
sion. Many works have already been published on novel en-
coder/decoder architectures, learned transforms, and learn-
ing to better quantize real variables [20]] [16] [2] [6] [21] [9]
[3]] [13] [17].

Our hypothesis in this paper is that end-to-end learned
image compression methods have not yet matured to the
level to beat the state of the art signal-processing-based
transform codecs, e.g., the BPG codec. Hence, we propose
a learned post-processing method to improve the visual per-
ceptual quality of BPG compressed images.

2. Related Works

Available post-processing methods can be classified as
traditional filters and learned artifact reduction methods.

Traditional filters for removal of compression artifacts
include deblocking and deringing filters that were proposed
as in-loop or post-processing filters to be used with im-
age/video compression standards. An example for in-loop
filters is the HEVC deblocking filter [15]. Commonly used
post-processing filters are those of Foi et al. [7], which
proposed thresholding in shape-adaptive DCT domain for
deblocking; Zhang et al. [22], which proposed similarity
priors for image blocks to reduce compression artifacts by
estimating the transform coefficients of overlapped blocks
from non-local blocks; and Dar et al. [4)], which modeled
the compression-decompression procedure as a linear sys-
tem and then estimate the solution to the inverse problem.

Methods using deep learning for post-processing of com-
pression artifacts include Dong et al. [S], which proposes 4
layer convolutional neural network for deblocking and de-
blurring of compressed images; Svoboda et al. [18]], which
proposes an 8 layer residual network and add a loss term de-
fined by the difference between the first partial derivatives
of the target and output images to the MSE loss; and Galteri
et al. [8], which proposes a solution based on generative ad-
versarial networks (GAN) to reduce compression artifacts.

3. System and Network Architecture

The proposed system is depicted in Figure |[I} The en-
coder unit uses the BPG encoder [[1]. The decoder unit
comprises of a BGP decoder and post-processing network.
Since we trained three different networks, the encoder adds
a byte in the beginning of the bit-stream to signal the choice
of the neural network. Decoder unit reads the first byte and
sends the rest of the bitstream to the BPG decoder. Then,
the decompressed image is processed by the selected post-
processing network yielding the final output image.

The proposed neural network is a modified version of
the enhanced deep super-resolution (EDSR) network [14],
which is based on SRResNet [12] architecture. The main
difference between EDSR and ours is that we use SELU
activation function [11] instead of ReLU as shown in Fig-
ure E} since SELU activation enables faster learning [[11].
We also remove the upsampling blocks of SRResNet. Un-

2602

Decoder

Encoder

Figure 1: Block diagram of encoding/decoding system.

like the networks in [[14] and [12l], we add a direct shortcut
connection from the input RGB image to output RGB im-
age. Since our aim is to restore compressed images, the
input image is closer to the output image than the randomly
initialized network from the point of optimization. Because
of this, we also multiply the contribution of the network
with 0.1. This way the overall function for the network is
closer to identity function so that the predictions of the net-
work resemble the input image at the beginning of training.

B Residual Blocks

—_— e —p > > > > >

|

Figure 2: Architecture of the proposed post-processing net-
work with B residual blocks. There is a direct shortcut con-
nection from the input image to output image.

l

Figure 3: A residual block with kernel size k, number of
feature maps n and stride s. We also employ residual scaling
to make training easier as suggested in [19].

In order to comply with RAM requirements (8 GB) on
the evaluation server, our decoder divides the input image to
4 blocks and processes these blocks separately. We employ
an Overlap-Save method, to produce the same output as if
the whole image is processed at once. In order to apply
the Overlap-Save method, the effective kernel size of the
neural network has to be calculated. For a network which
has [convolutional layers with kernel size of k, the effective
kernel size E of the overall network is £ = (k — 1) + 1.
After we divide the input image to 4 blocks, we pad each
block on all sides to size % Then, we pass these blocks
through the network. When merging the output blocks, we

discard overlapping pixels and construct the output image.

4. Training Method

We train 3 models with different depth B, referring to the
number of blocks, and width n, referring to the number of
feature maps in Figures [2)and [3] These networks are called
MVGL A (B=32, n=96) with 5.40M parameters, MVGL B
(B=8, n=96) with 1.42M parameters, and MVGL C (B=32,
n=48) with 1.35M parameters. MVGL A is trained with
batch size of 24, while both MVGL B and MVGL C are
trained with batch size of 64.

We train all networks with the given training set consist-
ing of 1633 images. We encode the training images using
the BPG encoder with QP=40 at the highest compression
level (9). QP=40 is the minimum QP value that we can
choose to fit the validation set into the given constraint of
0.15 bits per pixel (bpp).

We calculate the mean of the RGB channels of all im-
ages in the training set (single mean per channel for the
training set), and subtract them from both target images
and their compressed/decompressed versions before feed-
ing them into the network. We train networks on MSE loss
using the Adam optimizer[10] with the default parameters
(B1 = 0.9, B3 = 0.999). The learning rate is initialized
to 0.001 and is halved at every 500" epoch. Networks are
trained on 96 x 96 random crops without any data augmen-
tation. A random patch of size 96 x 96 is cropped randomly
from every training image to create training batch for an
epoch. We stop training networks upon convergence, that
is, when there is no improvement for 50 epochs.

5. Evaluation

We present PSNR and MS-SSIM results for different QP
and networks on the given training, validation, and test sets.

5.1. Results on Training and Validation Sets

The average PSNR and MS-SSIM results on the training
and validation sets encoded with QP=40 are shown in Ta-
ble[I] MVGL A is the best performing network with PSNR
gain of ~ 0.7dB on both training and validation sets, since
it has the largest number of parameters (weights). MVGL B
and MVGL C networks give comparable results with ~ 0.3-
0.4 dB PSNR improvements, since the number of parame-
ters in these networks are close to each other.

Table 1: Results on the training set (0.169 bpp) and vali-
dation set (0.149 bpp) where QP=40 for BPG compression.

Training Set Validation Set

Method | PSNR | MS-SSIM | PSNR | MS-SSIM
BPG 30.529 0.948 30.842 0.948
MVGL A | 31.221 0.955 31.533 0.955
MVGL B | 30.899 0.951 31.223 0.952
MVGL C | 30.952 0.952 31.277 0.950

2603

5.2. Encoding the Test Set with File Size Constraint

Suppose there are N images in the test set and we need
to choose the best QP value of out of M different values for
each image to maximize the average PSNR of BPG encod-
ing subject to a file size constraint. We formulate this prob-
lem as an integer linear programming problem, given by

N
. T .
H%lin ;fz T; (1a)
s.t. ZbiTa?i < FileSizeLimit, (1b)
i=1
ligypyz; =1, Vi=1,2,--- N, (1c)

z, €{0,1}, Vi=1,2,---N, Vi =1,2,--- M (Id)

where x; is M x 1 one-hot vector such that the entry which
equals 1 indicates the QP selected for the i*" image, f; is
M x 1 vector whose components are the sum of squared
error between the raw and encoded images for different
QPs, and b; is M x 1 vector whose components denote
the file size when i*" image is encoded with all possible
QP. Eqn. [Ib]enforces that the sum of sizes of all images are
below the given file size constraint F'ileSizeLimit. Con-
straints [Tc| and [Td| require that only one QP is selected for
each image.

We solved this problem for N = 286 and M = 5 cor-
responding to QP values 38 to 42. Solution of this problem
reveals that we should encode 1 image with QP=38, 109 im-
ages with QP=40, 120 images with QP=41, and 56 images
with QP=42 so that the average bitrate is 0.15 bpp.

5.3. Results on the Test Set

We encoded N = 286 images in the test set with the QP
values determined above to meet the file size constraint. We
now need to determine which of the three networks to use
for post-processing of each image. Our results in Table 2
indicate that the best results can be obtained by the network
MVGL A; however, the total processing time was too long.
MVGL B and MVGL C are considerably faster but yield
lower PSNR improvements.

Submitted Results: Because the training of MVGL C
was not complete by the Challenge submission deadline, we
decided to process 71 images by MVGL A and the remain-
ing images by MVGL B so that the total processing time is
less than = 45 hours on Intel i17-3630QM 2.40GHz CPU.
This method is called MVGL in Table 2 and is our submis-
sion to the Challenge. 71 images to be processed by MVGL
A are selected such that they yield the biggest PSNR im-
provement when processed by MVGL A instead of MVGL
B. Had we considered combination of MVGL A and MVGL
C for our submission, the average PSNR would be 30.180.

Complete Results: Table [3] presents average PSNR
and MS-SSIM values for all combinations of encoding all

Table 2: Average PSNR and MS-SSIM and time (mins) for
the Test Set. The average bit-rate is 0.15 bpp. PSNR gain is
the difference between PSNR of post-processed and BPG.

Method PSNR | PSNR Gain | MS-SSIM | Time
BPG 29.692 - 0.944
MVGL A | 30.267 0.575 0.950 6210
MVGL B | 30.011 0.319 0.947 1582
MVGL C | 30.052 0.360 0.947 634
MVGL | 30.135 0.443 0.948 2725

images in the test set with QP values 39-43 and post-
processing them by all three networks. In each row of the
table, we encode all images in the test set with the same QP.
Table [3] shows that all three networks provide solid PSNR
gains across different QP values which means that the net-
works generalize for different QP values well even though
they are only trained with images encoded using QP=40.
All images show impressive visual quality improvement.
Two example visual results are shown in Figure 4]

6. Conclusions

The success of the proposed deep learning methods for
post-processing of compressed/decompressed images de-
pends on availability of sufficient processing power for both
training and testing. Our results (comparing Network B and
Network C) show that the average PSNR over the test set
(for the same rate) improves by the depth of the network.
However, the computational load of test phase with even
moderately deep networks can be demanding. As a result,
we were not able to submit our best results for the challenge,
but only those results that conform with the computational
constraints imposed by the Challenge administrators.

References

[1] Better Portable Graphics encoder/decoder and bitstream
specification. https://bellard.org/bpg/,
https://bellard.org/bpg/bpg_spec.txt.

[2] J. Balle, V. Laparra, and E. P. Simoncelli. End-to-end opti-
mized image compression. In JCLR, April 2017.

[3] M. Covell, N. Johnston, D. Minnen, S. Hwang, J. Shor,
S. Singh, D. Vincent, and G. Toderici. Target-quality image
compression with recurrent, convolutional neural networks.
In eprint arXiv:abs/1705.06687, May 2017.

[4] Y. Dar, A. M. Bruckstein, M. Elad, and R. Giryes. Postpro-
cessing of compressed images via sequential denoising. In
eprint arXiv:abs/1510.09041v2, Mar. 2016.

[5] C. Dong, Y. Deng, C. C. Loy, and X. Tang. Compression
artifacts reduction by a deep convolutional network. In Proc.
of Int. Conf. on Computer Vision (ICCV), 2015.

[6] T. Dumas, A. Roumy, and C. Guillemot. Image compres-
sion with stochastic winner-take-all auto-encoder. In IEEE
ICASSP, Mar 2017.

[7]1 A. Foi, V. Katkovnik, and K. Egiazarian. Pointwise shape-
adaptive dct for high-quality denoising and deblocking of
grayscale and color images. IEEE Trans. on Image Process-
ing, 16(5):1395-1411, May 2007.

2604

https://bellard.org/bpg/
https://bellard.org/bpg/bpg_spec.txt

(8]

(9]

[10]

(1]

[12]

[13]

[14]

Table 3: Results for the test set encoded with different QP values.

BPG MVGL A MVGL B MVGL C
QP | PSNR | MS-SSIM | PSNR | MS-SSIM | PSNR | MS-SSIM | PSNR | MS-SSIM | Bitrate (bpp)
39 | 30.833 0.954 31.486 0.960 31.189 0.957 31.238 0.957 0.206
40 | 30.333 0.949 30.956 0.955 30.674 0.952 30.720 0.953 0.179
41 | 29.735 0.943 30.334 0.950 30.064 0.946 30.108 0.947 0.152
42 | 29.249 0.938 29.802 0.944 29.554 0.941 29.594 0.941 0.132
43 | 28.687 0.930 29.200 0.937 28.970 0.934 29.008 0.934 0.111

(d) Image # (rectangle shows crop location)

L

(e) BPG (crop), PSNR=31.798 dB

Figure 4: Visual results for two images from the Test Set.

L. Galteri, L. Seidenari, M. Bertini, and A. Del Bimbo.
Deep generative adversarial compression artifact removal. In
eprint arXiv:abs/1704.02518, Dec. 2017.

N. Johnston, D. Vincent, D. Minnen, M. Covell, S. Singh,
T. Chinen, S. J. Hwang, J. Shor, and G. Toderici. Im-
proved lossy image compression with priming and spa-
tially adaptive bit rates for recurrent networks. In eprint
arXiv:abs/1703.10114, Mar 2017.

D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. In 3rd Int. Conf. on Learning Representations
(ICLR), May 2015.

G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochre-
iter. Self-normalizing neural networks. In eprint
arXiv:abs/1706.02515, Sept. 2017.

C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cun-
ningham, A. Acosta, A. Aitken, A. Tejani, J. Totz,
Z. Wang, and W. Shi. Photo-realistic single image super-
resolution using a generative adversarial network. In eprint
arXiv:abs/1609.04802, May 2017.

M. Li, W. Zuo, S. Gu, D. Zhao, and D. Zhang. Target-quality
image compression with recurrent, convolutional neural net-
works. In eprint arXiv:abs/1703.10553, Mar 2017.

B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee. Enhanced
deep residual networks for single image super-resolution. In
The IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR) Workshops, July 2017.

[15] A. Norkin, G. Bjontegaard, A. Fuldseth, M. Narroschke,

[16]
(7]

(18]

(19]

[20]

(21]

(22]

2605

M. Ikeda, K. Andersson, M. Zhou, and G. V. der Auwera.
Hevc deblocking filter. IEEE Trans. on Circuits and Systems
for Video Tech., 22(12):1746-1754, Dec 2012.

O. Rippel and L. Bourdev. Real-time adaptive image com-
pression. In /CML, May 2017.

S. Santurkar, D. Budden, and N. Shavit. Generative com-
pression. In eprint arXiv:abs/1703.01467, Jun 2017.

P. Svoboda, M. Hradis, D. Barina, and P. Zemcik. Compres-
sion artifacts removal using convolutional neural networks.
Journal of WSCG, 24(2):63-72, 2016.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi. Inception-
v4.inception-resnet and the impact of residual connections
on learning. In eprint arXiv:abs/1602.07261, Aug. 2016.

L. Theis, W. Shi, A. Cunningham, , and F. Huszar. Lossy im-
age compression with compressive autoencoders. In ICLR,
April 2017.

G. Toderici, D. Vincent, N. Johnston, S. J. Hwang, D. Min-
nen, J. Shor, and M. Covell. Full resolution image compres-
sion with recurrent neural networks. In 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 5435-5443, July 2017.

X. Zhang, R. Xiong, X. Fan, S. Ma, and W. Gao. Compres-
sion artifact reduction by overlapped-block transform coeffi-
cient estimation with block similarity. IEEE Trans. on Image
Processing, 22(12):4613-4626, Dec 2013.

