
BlockCNN: A Deep Network for Artifact Removal and Image Compression

Danial Maleki, Soheila Nadalian, Mohammad Mahdi Derakhshani, Mohammad Amin Sadeghi

School of Electrical and Computer Engineering, University of Tehran

{d.maleki, nadalian.soheila, mderakhshani, asadeghi}@ut.ac.ir

Abstract

We present a general technique that performs both arti-

fact removal and image compression. For artifact removal,

we input a JPEG image and try to remove its compression

artifacts. For compression, we input an image and process

its 8 × 8 blocks in a sequence. For each block, we first

try to predict its intensities based on previous blocks; then,

we store a residual with respect to the input image. Our

technique reuses JPEG’s legacy compression and decom-

pression routines. Both our artifact removal and our im-

age compression techniques use the same deep network, but

with different training weights. Our technique is simple and

fast and it significantly improves the performance of artifact

removal and image compression.

1. Introduction

The advent of Deep Learning has led to multiple

breakthroughs in image representation including: super-

resolution, image compression, image enhancement and

image generation. We present a unified model that can per-

form two tasks: 1- artifact removal for JPEG images and 2-

image compression for new images.

Our model uses deep learning and legacy JPEG compres-

sion routines. JPEG divides images into 8 × 8 blocks and

compresses each block independently. This causes block-

wise compression artifact (Figure 2). We show that the

statistics of a pixel’s artifact depends on where it is placed

in the block (Figure 2). As a result, an artifact removal tech-

nique that has a prior about the pixel’s location has an ad-

vantage. Our model acts on 8 × 8 blocks in order to gain

from this prior. Also, this let us reuse JPEG compression.

For image compression, we examine image blocks in a

sequence. When each block is being compressed, we first

try to predict the block’s image according to its neighbour-

ing blocks (Figure 1). Our prediction has a residual with

respect to the original block. We store this residual which

requires less space than the original block. We compress

this residual using legacy JPEG techniques. We can trade

off quality versus space using JPEG compression ratio.

BlockCNN
Artifact

Removal

Image

Generation

8

8

8

8 8 8

BlockCNN

8

8

8

8

8

8

8

8 8 8

Figure 1. BlockCNN: This architecture can be used for both ar-

tifact removal and image compression. BlockCNN acts on 8 × 8

image blocks. Top: To remove artifact from each block, we in-

put this block together with its eight adjacent blocks and try to

removes artifacts from the center block. Bottom: This architecture

can predict a block given four of its neighbors (three blocks to the

top and one to the left). We use this image prediction to compress

an image. We first try to predict a block and then we store the

residual which takes less space.

7.0

6.8

6.6

6.4

6.2

Original Residual Compressed

Figure 2. Left: JPEG compresses each 8×8 block independently.

Therefore, each block has independent artifact characteristics. Our

artifact removal technique acts on each block separately. Right:

The statistics of a pixel’s compression artifact depends on where it

is located within an 8× 8 block. The right figure, illustrates Mean

Square Error of pixel intensities (within a block) after compres-

sion. We used 6 Million image blocks with quality factor of 20 to

produce this figure.

Our image prediction is a deterministic process. There-

fore, during decompression, we first try to predict a block’s

content and then add up the stored residual. After decom-

pression, we perform artifact removal to further improve the

quality of the restored image. With this technique we get a

superior quality-space trade-off.

12555

3x24x24

conv convres

16x8x8

...res

16x8x8 32x8x8 3x8x8

Residual

Block

 B
at

ch
 N

or
m

co
n
v
3
x
3

+
x

F(x)+x

co
n
v
1
x
1

L
e
a
k
y
 R

e
L
U

co
n
v
1
x
1

 B
a
tc

h
 N

o
rm

L
e
a
k
y
 R

e
L
U

 B
a
tc

h
 N

o
rm

L
e
a
k
y
 R

e
L
U

 B
a
tc

h
 N

o
rm

L
e
a
k
y
 R

e
L
U

Figure 3. Our network architecture. Top: We input a 24 × 24

color image and output an 8 × 8 color image. Our network has

a series of convolution and residual blocks. Bottom: Our residual

block consists of several operations including convolution, batch

normalization, and leaky ReLU activation function.

2. Related Work

JPEG [19] compresses 8 × 8 blocks using quantized

cosine coefficients. JPEG compression could lead to un-

wanted compression artifacts. Several techniques are devel-

oped to reduce artifacts and improve compression:

• Deep Learning: Jain et al. [10] and Zhang et al. [21]

trained a network to reduce Gaussian noise. Dong

et al. [5] trained a network to reduce JPEG compres-

sion artifacts. Mao et al. [12] developed an encoder-

decoder network for denoising. Theis et al. [15] pre-

sented an auto-encoder based compression technique.

• Residual-based Techniques: Svoboda et al. [14] ap-

plied residual representation learning to define an eas-

ier task for network. Baig et al. [2] use image inpaint-

ing before compression. Dong et al. [5] reuse pre-

trained models to speeds up learning.

• Generative Techniques: Santurkar et al. [13] used

Deep Generative models to reproduce image and video

and remove artifacts. Galteri et al. [7] used Generative

Adversarial Networks to reduce compression artifact.

A notable work in image generation is PixelCNN by

Oord et al. [18]. Dahl et al. [4] introduced a super-

resolution technique based on PixelCNN. Our Block-

CNN architecture is also inspired by PixelCNN.

• Recurrent Neural Networks: Toderici et al. [17] pre-

sented a compression technique using an RNN-based

encoder and decoder, binarizer, and a neural network

for entropy coding. They also employ a new vari-

ation of Gated Recurrent Unit [3]. Another work

by Toderici et al. [16] proposed a variable-rate com-

pression technique using convolutional and deconvo-

lutional LSTM [9] network.

Residual

BlockCNN

Prediction

Original Block

?

Stored

-

Figure 4. Our compression pipeline. We process image blocks in

a sequence. For each block (highlighted with question mark), we

first try to predict its intensities using the previous blocks. Then

we compute the residual between our prediction and the original

block. We store this residual and continue to the next block. Dur-

ing decompression we go through a similar sequential process. We

first predict an image block using its previous blocks and then add

up the residual.

3. BlockCNN

Similar to JPEG, we partition an image into 8× 8 blocks

and process each block separately. We use a convolutional

neural network that inputs a block together with its adjacent

blocks (a 24 × 24 image), and outputs the processed block

in the center. We call this architecture BlockCNN. We use

BlockCNN both for artifact removal and image compres-

sion. In the following subsections, we discuss the specifica-

tions in more detail.

3.1. Deep Architecture

BlockCNN consists of a number of convolution layers

in the beginning followed by a number of residual blocks

(resnet [8]). A simplified schematic of the architecture is

illustrated in Figure 3. A residual block is formulated as:

G(x) = F (x) + x (1)

where x shows the identity mapping and F (x) is a feed-

forward neural network trying to learn the residual (Fig-

ure 3, bottom). Residual blocks avoid over-fitting, van-

ishing gradient, and exploding gradient. Our experiments

show that residual blocks are superior in terms of accuracy

and rate of convergence.

We use mean square error as loss function. For training,

we use Adam [11] with weight decay of 10−4 and learning

rate of 10−3. We train our network for 120, 000 iterations.

3.2. BlockCNN for Artifact Removal

For artifact removal we train BlockCNN with JPEG

compressed blocks as input and an uncompressed block as

target (Figure 1). This network has three characteristics that

make it successful. Residual: Since compression artifact is

naturally a residual, predicting artifact as residual is eas-

ier than encoding and decoding a block. It leads to faster

22556

Original Image Compressed Image Enhanced Image

Figure 5. Left: Original image before compression. Center: JPEG

compressed Image with block-wise artifact. Right: Enhanced Im-

age using our technique. Note that our result has improved block-

ing and ringing artifacts.

Figure 6. Left: Original Image fed to BlockCNN for compression.

Center: BlockCNN prediction. Each block in this image shows

the best prediction using previously seen blocks. Right: The dif-

ference between the original image and our prediction (Residual).

We store residual instead of the original image.

and improved convergence behavior. Context: BlockCNN

input adjacent cells so it can use context to improve its es-

timate of residual. Of course, larger context can improve

performance but we limit context to one block for better il-

lustration. block structure: The statistics of artifact depend

on where a pixel is placed within a block. BlockCNN takes

advantage of the prior of pixels’ location within a block.

3.3. BlockCNN for Image Compression

The idea behind our technique is the following: Any-

thing that can be predicted does not need to be stored.

We traverse image blocks row wise. Given each block,

we first try to predict its intensities given previously seen

blocks. Then we compute the residual between our predic-

tion and the actual block and store this residual (Figure 4).

When storing a block’s residual we compress it using JPEG.

JPEG has two major benefits: 1- It is simple, fast and read-

ily available; 2- We can reuse JPEG’s quality factor to trade

off size with quality.

During decompression we follow the same deterministic

process. For each block, we try to predict its intensities and

then add up the stored residual. Note that for predicting a

block’s image, we use the compressed version of the pre-

vious blocks, because otherwise compression noise propa-

gates and accumulates throughout image. For this predic-

tion process we reuse BlockCNN architecture but with dif-

ferent training examples and thus different weights. The

major difference in training examples is that only four out

of nine blocks are given as input.

JPEG AR-CNNOurs

Figure 7. Qualitative comparison between artifact removal algo-

rithms.

4. Experiments and Results

We used PASCAL VOC 2007 [6] for training. Since

JPEG compresses images in Lab colorspace, it produces

separate intensity and color artifacts. Therefore, we perform

training in Lab colorspace to improve our performance for

ringing, blocking, and chromatic distortions.

For optimization process we use Adam [11] with weight

decay of 10−4 and a learning rate of 10−3. This network is

trained for 120, 000 iterations.

4.1. Artifact Removal Results

Artifact removal techniques in the literature are usually

benchmarked using LIVE [1] dataset. Peak signal-to-noise

ratio (P-SNR) and structural similarity index measurement

(SSIM) [20] are regularly used as evaluation criteria. We

follow this convention and compare our results with AR-

CNN [5] (Figure 7). We trained a BlockCNN with 9 resid-

ual blocks. We use approximately 6 Million pairs of input

and target for training.

4.2. Image Compression Results

Kodak 1 dataset is commonly used as a benchmark for

Image Compression. We evaluate our method using peak

signal-to-noise ratio (P-SNR) and structural similarity index

measurement (SSIM). After image decompression, we per-

form artifact removal to improve quality. We compare our

results with Toderici et al. [17] and CAE [15] (Figure 9).

5. Discussion

We presented BlockCNN, a deep architecture that can

perform artifact removal and image compression. Our tech-

nique respects JPEG compression conventions and acts on

8× 8 blocks. The idea behind our image compression tech-

nique is that before compressing each block, we try to pre-

dict as much as possible from previously seen blocks. Then,

we only store a residual that takes less space. Our technique

reuses JPEG compression routines to compress the residual.

Our technique is simple but effective and it beats baselines

for high compression ratios.

1http://r0k.us/graphics/kodak/

32557

0.245972 bpp

0.356608 bpp

CAE

0.250377 bpp

0.366781 bpp

Ours

0.250468 bpp

0.359151 bpp

JPEG 2000

0.35625 bpp

0.248413 bpp

JPEG

0.375 bpp

0.25 bpp

Toderici et al.

Figure 8. Qualitative comparison between different compression algorithms at low bit rates. Note that our technique performs a better job

at preserving details.

0.0 0.5 1.0 1.5 2.0

Bit rate [bpp]

20

25

30

35

40

45

P
S

N
R

 [
d

B
]

0

5

0

5

0

5

0.0 0.5 1.0 1.5 2.0

Bit rate [bpp]

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

S
S

IM

5

0

5

0

5

0

5

0

5

0

5

0

5

0

5

0

JPEG JPEG2000 Toderici CAE Ours

Figure 9. Comparison of compression technqiques using PSNR

and SSIM. Note that our technique outperforms baselines at low

bit rates.

References

[1] Live image quality assessment database.

[2] M. H. Baig, V. Koltun, and L. Torresani. Learning to inpaint for

image compression. CoRR, abs/1709.08855, 2017.

[3] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk,

and Y. Bengio. Learning phrase representations using RNN encoder-

decoder for statistical machine translation. CoRR, abs/1406.1078,

2014.

[4] R. Dahl, M. Norouzi, and J. Shlens. Pixel recursive super resolution.

In IEEE International Conference on Computer Vision, ICCV 2017,

Venice, Italy, October 22-29, 2017.

[5] C. Dong, Y. Deng, C. C. Loy, and X. Tang. Compression artifacts

reduction by a deep convolutional network. In 2015 IEEE Interna-

tional Conference on Computer Vision, ICCV 2015, Santiago, Chile,

December 7-13, 2015.

[6] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zis-

serman. The pascal visual object classes (voc) challenge. Interna-

tional Journal of Computer Vision, 88(2), June 2010.

[7] L. Galteri, L. Seidenari, M. Bertini, and A. D. Bimbo. Deep

generative adversarial compression artifact removal. CoRR,

abs/1704.02518, 2017.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for

image recognition. CoRR, abs/1512.03385, 2015.

[9] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural

Comput., 9(8):1735–1780, Nov. 1997.

[10] V. Jain and S. Seung. Natural image denoising with convolutional

networks. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou,

editors, Advances in Neural Information Processing Systems 21. Cur-

ran Associates, Inc., 2009.

[11] D. P. Kingma and J. Ba. Adam: A method for stochastic optimiza-

tion. CoRR, abs/1412.6980, 2014.

[12] X. Mao, C. Shen, and Y. Yang. Image restoration using very deep

convolutional encoder-decoder networks with symmetric skip con-

nections. In Advances in Neural Information Processing Systems

2016.

[13] S. Santurkar, D. M. Budden, and N. Shavit. Generative compression.

CoRR, abs/1703.01467, 2017.

[14] P. Svoboda, M. Hradis, D. Barina, and P. Zemcı́k. Compres-

sion artifacts removal using convolutional neural networks. CoRR,

abs/1605.00366, 2016.

[15] L. Theis, W. Shi, A. Cunningham, and F. Huszár. Lossy im-

age compression with compressive autoencoders. arXiv preprint

arXiv:1703.00395, 2017.

[16] G. Toderici, S. M. O’Malley, S. J. Hwang, D. Vincent, D. Minnen,

S. Baluja, M. Covell, and R. Sukthankar. Variable rate image com-

pression with recurrent neural networks. CoRR, 2015.

[17] G. Toderici, D. Vincent, N. Johnston, S. J. Hwang, D. Minnen,

J. Shor, and M. Covell. Full resolution image compression with re-

current neural networks. In CVPR , 2017.

[18] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel re-

current neural networks. CoRR, abs/1601.06759, 2016.

[19] G. K. Wallace. The jpeg still picture compression standard. Commun.

ACM, 34(4), Apr. 1991.

[20] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image-

qualityassessment:fromerrorvisibilitytostructuralsimilarity. Trans.

Img. Proc., 13(4):600–612, Apr. 2004.

[21] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond a gaus-

sian denoiser: Residual learning of deep CNN for image denoising.

CoRR, 2016.

42558

