
An Implementation of Picture Compression with A CNN-based Auto-encoder

Ming Li

VimicroAI

Building 16,Hengqin Financial District,

Zhuhai city, Guangdong Provice, P.R.C

li.ming@zxelec.com

Jianhua Hu,Changsheng Xia,Yundong Zhang

VimicroAI

Building 16,Hengqin Financial District,

Zhuhai city, Guangdong Provice, P.R.C

Abstract

We mainly use the importance-map CNN method intro-

duced by Mu.Li[1] to compress the CLIC2018 validation

and test pictures. The framework is an autoencoder, with

the bottleneck containing a 4-bit importance map and a

1/8 scale-down feature maps(FMs) of 64-channel and 1-

bit contents. We re-implemented this model in the Tensor-

flow/python enviroment. Different from the original work,

we modify the network a little to ge better performance and

creatively replace the entropy-coding scheme with a much

simpler reorder and run-length coding method. We also

share some techniques and experiences for model training

and fine tuning the encoder for the CLIC2018 test pictures.

Method of controlling the final bit rate is also mentioned.

1. Introduction

The recent great successes achieved by deep natural net

work are mainly in fields of image classification, semantic

segmentation, object detection. But it hasn’t been deeply

researched for the image/video compression application.

Mu.Li[1] introduced the importance-map method, using s-

tacked CNN layers with strides to encode the input image

into the bottleneck. The bottleneck contains a 4-bit im-

portance map indicating the importance level of the corre-

sponding reception field. The areas which are important

are allocated with more coding bits. The bottleneck also

including a 64 channels, 1-bit feature maps(as FMs). FMs

contains the main compressed information of the input map.

The importance map is generated from the last second layer

in encoder, forming the 1bit masking layer to elementwise

multiply(mux out) the last layer of encoder. The importance

map and the 1-bit feature maps are all of 1/8 size of the o-

riginal image. Convolution filters with strides is used for

scaling down instead of the normal usage of pooling.

The generative network is also using a deep CNNs. The

depth to space technique[2] is mainly used to scale-up the

FMs. Mu.Li used a complex CNTX model derived from

CABAC[3] for the entropy coding, achieved compress rate

of about 80%. We alternatively use a much simpler cod-

ing scheme also achieve the similar compress rate. We

implement Mus model in Tensorflow/ python environment,

including the training, hard-example mining, training, en-

tropy coding and evaluation.

2. Architecture of our approach

The structure of the codec is shown in Fig1. It is quoted

from Mus paper[1]. It has a main path which generates the

1-bit binary FMs and branch to form the importance map.

As can be seen, the importance map actually indicates those

most detailed areas like objects edges, people’s hair, grasses

, etc. It helps to allocate more bits to preserve those details.

This is done by mapping the 4bit importance map into a 64

channel 1-bit mask layer. The quantization is done by using

the sigmoid activation followed by a round function.

2.1. Encoder

The detailed structure of encoder is as Table.1. N×N×C

means the filter size and output channel number, s means

stride, relu or sigmoid is the activation function for each lay-

er. Note this structure is different from Mus original paper,

a 3×3×256 convolution layer(in red) is inserted between 2

residual blocks. All paddings use SAME mode. This helps

to get better performance.

2.2. Decoder

The decoder consists of depth to space layers to up-scale

FMs. Compared with deconvolution, it is much cheaper and

keeps good performance. The detailed structure of decoder

is also different from the original paper , and is listed in

Table2. All padding use SAME mode.

2.3. Residual block

The residual block we use is descripted in Fig2. It is the

same as the original paper. Note that bs mean block size for

the depth to space module.

12543



Figure 1. Architecture of Mus papaer[1]

main path importance map path

RGB 3ch image

8× 8× 128, s = 4, relu
ResBlk, num = 128
4× 4× 256, s = 2, relu
ResBlk, num = 256
3× 3× 256, s = 1, relu
ResBlk, num = 256 ↘ copy from left

1× 1× 64, s = 1,
sigmoid 3× 3× 128, s = 1, relu
↓ 1× 1× 1, s = 1, sigmoid
1bit compressed 64 channel 4bit importance map,

FM,M/8 x N/8 x 64 x 1bit M/8 x N/8 x 4bit

Table 1. Our detailed encoder structure

Figure 2. Residual block structure[1]

2.4. Importance map generation

The importance maps path is from the last second layer

in the main path. The original paper did not mention the

details but we assume that the importance map can be easily

obtained just like edge extraction using easy Soble filter. So

we use a simple 2-layer network to achieve this. As list

in Table.3. The importance map is within [0,1] after the

sigmoid activation, we next multiply it with 16 and floor

the results into integers within [0,15]. We define it as Pxy to

indicate importance level at location x,y. The result above

is then mapped into a 1-bit mask with the same size(M/8

×N/8×64) of the 1-bit compressed FMs in the main path.

Let Mxyk be the bit at location x,y in channel k(k is within

[0,63]). And the mapping function is:

Mxyk =

{

1, if Pxy ≥ k

0, otherwise

3. Entropy coding

Mu used very complex CNTX model to predict each bit

when encoding the bottleneck’s entropy. Hes paper showed

the compression rate is about 80%. We use a much sim-

pler coding scheme also achieving the similar compression

rate. We found when scanning the 1-bit FMs line by line,

then channel by channel is tending to get consecutive 1 or 0

bits. This gives possibility to map this sequence in to run-

length form and squeeze more when using a range coder(we

actually used the range-coder the organizer had suggested).

So before entropy coding, we reshape the 1-bit FMs from

H×W×C to C×H×W, and we further invert each even line

to make the scan sequence more consecutive. Note that we

skip bits that are not available(indicated by the mask layer).

The scan sequence is as Fig3. The run-length mapping is as

Fig4. The very first bit is the same as input, but the bits after

are set to 1 only when the current bit is different from the

previous one. The 4-bit importance map is simply encoded

with range coder without reorder and run-length mapping

as the 1-bit FMs do.

4. Training

We use Adam optimizer to train the model, with the

learning rate at 1e-5. We do not follow the step-down L-

R method mentioned in [1] because Adam optimizer adapts

LRs for different trainable variables individually and auto-

matically. We first trained the model with the importance

22544



layer description

inputM/8×M/8× 64(0or1)
3× 3× 512, s = 1, relu
ResBlk, num = 512
3× 3× 512, s = 1, relu
residualblk, num = 512
depthtospace, bs = 2
3× 3× 256, s = 1, relu
residualblk, num = 256
depthtospace, bs = 4
3× 3× 32, s = 1, relu
3× 3× 3, s = 1, None

Table 2. Our detailed decoder structure

importance extraction network

3× 3× 128, s = 1, relu
1× 1× 1, s = 1, sigmoid

Table 3. Importance map branch

map fixed to all 1 output, letting all 64 channels FMs pass

the bottleneck. When the result converged, we then un-

restricted the importance map’s parameters and started to

shrink the channels.

4.1. Gradient

The key loss gradient we need to focus is for the func-

tion that maps 4-bit importance map into 1-bit mask. And

also the rounding function following the sigmoid activation

of the last layer in encoder. For the rounding function, we

simply use 1 for the gradient backward propagation. For the

backward propagation for the 4bit importance map to mask

transform, we use the same formula in the original paper,

please refer to sec 3.1.3 in [1]

4.2. Mining hard examples

We used all 1633 clic2018 train-set pictures, plus about

10000 hard images randomly select from ImageNet 2012

valid-set. The hard images were selected by the ratio of file

size and the image size. Only the bit/pixel rate above 0.8

is selected. We believe the images of higher compress rate,

contain more difficult cases for reconstruction and hence ac-

celerate the training. All images are cropped into 128x128

as sample patches without overlapping.

4.3. Loss function

The loss function is aimed to balance the distortion and

the final bit length. The first part Loss1 is MSE of all pix-

els channel(RGB) between the reconstruction and original

patches, the second part Loss2 is the mean of importance

map(result after sigmoid activation)

Loss = Loss1 + λ * Loss2

Figure 3. 1-bit FMs scan sequence

we chose a λ around 2300 that could achieve the 0.15bpp

target compression-rate for the valid data.

Figure 4. run-length mapping

5. Fine tuning model for test data

When the clic2018 test data was released, we found two

major problems when encoding them with the model we

had trained on the train pictures. Firstly the encoded bits

is 13.8MB slightly exceeded the 13.3MB limitation. The

second problem was the reconstructions of a few pictures

distorted dramatically, the MSE is above 3000 which was

obviously unusual. We addresses these problems on the en-

coder side, keeping decoder unchanged.

5.1. More restriction on bit rate

To address the first issue, at the beginning, we multi-

plied the importance map(after sigmoid) with a scale factor

of 0.95 and resulted in shrinking the channels in the mask.

But more pictures distorted unusually after this modifica-

tion. After carefully inspected, we found compression rate

of all these pictures were under 0.15bpp. We concluded that

distortions of these heavily compressed images is very sen-

sitive to bit rate reduction. Finally, we only scaled the im-

portance map of images of compression rate above 0.15bpp

with a factor of 0.93.

32545



5.2. Fine training for encoder

After constricting the size within 13.3M, there were stil-

l few images distorted too much, with MSEs above 3000,

severely degrading the final total average PSNR. It is be-

cause of lack of sufficient training data and training time.

We addressed this problem by freezing the decoder and fine

training the encoder with only these bad pictures. After fine

training, all these pictures were encoded again with the new

encoder, and reconstructed with the old decoder, resulting

all MSEs below 350.

References

[1] Mu Li, Wangmeng Zuo, Shuhang Gu, Debin

Zhao Learning Convolutional Networks for Content-

weighted Image Compression, arXiv:1703.10553v2

[2] G.Toderici, D. Vincent, N. Johnston, S.J.Hwang,

D.minnen, J.shor, and M.covell Full resolution image

compression with recurrent netural networks, arXiv

preprint arXiv:1608.05148, 2016. 1,2,3,

[3] D. Marpe, H. Schwarz, and T.Wiegand Context-based

adaptive binary arithmetic coding in the h. 264/avc

video compression standard, IEEE Transactions on cir-

cuits and systems for video technology, 13(7):620636,

2003. 2, 5

42546


