
Abstract

This paper describes xvc – a format for efficient

compression of visual data – originally developed for

compression of video sequences, but in the context of this

paper applied to still images. The xvc codec is a block

based lossy codec using a traditional approach for

prediction, residual representation and entropy coding.

There are no elements of Machine Learning or Artificial

Neural Networks in the xvc encoder or decoder. The xvc

codec offers support for tuning towards PSNR or

perceptual quality. The images submitted for the CLIC

challenge and the descriptions included in this paper are

based on the perceptually tuned setting.

1. Introduction

The xvc codec is a compression format for video and

images that was first released in Septemeber 2017 [1]. The

source code of the xvc project is publicly available, and

can be accessed through xvc.io [2] or directly from GitHub

[3]. The technology included in xvc is inspired by the

technology in AVC [4], HEVC [5] and JEM [6] but there

is no level of interoperability between xvc and any of these

codecs or exploration models, and xvc includes technology

that is not present in any of the other codecs. The xvc

codec is designed to offer better compression performance

than other video codecs and image codecs that exists in the

market, without introducing increased computational

complexity for the decoder.

2. Technology

The compression process in the xvc codec can be

divided into several parts, and each of these parts will be

described in this paper. It should be noted that several of

these parts have corresponding processing steps in both the

encoder and the decoder, but there are some steps that are

only performed in the encoder. Section 2.1 presents the

parts which are common or corresponding in both the

encoder and the decoder, while section 2.2 presents the

steps that are only performed in the encoder.

2.1. Processing parts common in encoder and decoder

2.1.1 Color conversion

The input sample data used in the CLIC challenge [7] is

represented as RGB data with 8-bit sample depth. In order

to decorrelate the color information, the RGB data is

converted to YUV data (one luma channel and two chroma

channels, sometimes denoted Y'CbCr) using the color

matrix defined in BT.601 [8]. Internally in the xvc encoder

and decoder, the YUV data is stored in a 10-bit

representation in 4:4:4 chroma format, i.e. no

supbsampling is applied to the chroma channels. After

decoding the compressed images, the xvc decoder converts

the YUV data back to RGB. For the purpose of the CLIC

challenge, the lodePNG library [9] is used to store the

images as PNG files.

2.1.2 Block partitioning

In xvc, the data is processed in blocks of size 64x64

samples called Coding Tree Units (CTUs). Each CTU can

be split with a horizontal split, a vertical split, or a quad-

split, resulting in two or four Coding Units (CUs). A CU

can be split further, recursively forming a tree of coding

units and it is at the leafs of this tree that prediction and

transform is applied. Each CTU consists of one coding

unit tree for luma and another coding unit tree shared by

the two chroma channels.

2.1.3 Prediction

Sample data in a CU is predicted from previously coded

CUs above and/or to the left of the current CU. The xvc

codec supports DC prediction, 65 different angular intra

prediction modes and a specific mode called “planar

mode” which uses a bi-linear weighting function to predict

each sample in the current CU, based on the neighboring

samples in adjacent CUs.

2.1.4 Cross component prediction

Even though a transformation from RGB to YUV

reduces correlation between the different color channels, it

is still quite common that some level of correlation exists

between the luma channel and the two chroma channels,

for example at an object boundary. In xvc, this correlation

is exploited in a specific mode that constructs a linear

model for predicting chroma information from the luma

information [10].

1

Image compression with xvc

Jonatan Samuelsson

Divideon
jonatan.samuelsson@divideon.com

https://www.divideon.com

Per Hermansson

Divideon
per.hermansson@divideon.com
https://www.divideon.com

2595

2.1.5 Transforms and quantization

The difference between the original sample values and

the predicted sample values is called the residual. Residual

data is transformed using one of several two-dimensional

separable transforms in xvc. In total there are five different

DCT-based and DST-based transforms available in xvc.

The transform coefficients are quantized and signaled in

reverse order in subblocks consisting of 4x4 coefficients

and with a scanning pattern that depends on the prediction

direction. In the decoder, the inverse process is applied,

where the coefficients are first parsed, then dequantized

and then transformed with the inverse transform. A

quantization parameter (QP) is used to determine how the

transform coefficients are interpreted. A higher QP means

larger steps between the coded values which leads to lower

quality and lower compressed image size. When xvc is run

with perceptual tuning, different QP values are used for

different CTUs as described in section 2.2.2.

2.1.6 Sign data hiding

The concept of Sign Data Hiding was proposed during

the HEVC standardization [11] and included in the HEVC

specification. The concept exploits the fact that among a

set of non-zero coefficients it is typically possible to

change the rounding of on of the coefficients with very

minor impact on the resulting residual. By calculating the

combined parity (odd or even) of the absolute value of all

coefficients in a 4x4 subblock, the sign of one of these

coefficients can be hidden. If the parity is “wrong”, one of

the coefficients will be changed and rounded differently to

produce the right parity, and thereby the right sign.

2.1.7 Entropy coding

The xvc codec uses a context adaptive binary arithmetic

coder (CABAC) which is the same entropy coder as is

used in AVC [4] and HEVC [5]. In CABAC, all symbols

are translated to binary representations for which the

probabilities are adjusted throughout the coding of a

picture.

2.1.8 Deblocking

Since the sample data is processed in blocks, there is a

risk that edges will become visible, especially at high QP

levels. By analyzing the edges between different CUs,

different amount of edge filtering can be applied based on

the sample values so as to remove visual blocking artifacts

without significantly blurring or distorting image

information.

2.2. Processing parts only present in encoder

There are several processing steps in xvc that are

performed in the encoder for which there is no

corresponding processing steps in the decoder. This causes

the encoder to be significantly more computational

complex compared to the decoder.

2.2.1 Rate-Distortion Optimization

One of the most important concepts in modern video

encoders is Rate-Distortion Optimization [12]. The central

idea in RDO is to perform evaluation of several different

options during the encoding process and select the option

that minimizes the cost function:
J =D+λ R

(1)

where J is the cost, D is distortion, λ is a variable

derived from the QP and R is the rate (estimated or actual).

When rate-distortion optimization is applied, the encoding

process will result in the best possible quality at as low

rate as possible, but it is typically not possible to

determine in advance what the level of the quality or what

the rate will be. However, the QP parameter (and thereby

the lambda) can be changed during encoding or in an outer

loop to reach a specific target quality or target rate. In the

CLIC challenge [7] there is a requirement to not exceed a

total size for all pictures corresponding to 0.15 bits per

pixel. For xvc, this is achieved by encoding all pictures at

several different QP levels and selecting a set that gives as

high quality as possible without exceeding the limit. For

tuning towards PSNR this process can be completely

automated, but for perceptual tuning, visual inspection was

also performed to ensure a consistent quality level among

the pictures, since the adaptive QP method described in the

next section doesn't include any normalization step.

2.2.2 Adaptive QP selection

Block based coding formats such as JPEG, AVC,

HEVC and xvc gives rise to compression errors that

become more visible at lower rates. These compression

artifacts are typically identified as “blockiness”, “ringing”,

“bluriness” etc. and they are typically more apparent in

areas with low textural information (flat areas) even

though the distortion, when measured with mean square

error (MSE), might be of similar magnitude in all areas of

the picture. When perceptual tuning is applied in xvc, the

QP for each CTU is selected based on the median variance

of the 16x16 subblocks of the CTU. If the variance is low,

the QP is decreased since low variance corresponds to low

level of textural information. Conversely, if the variance is

high, the QP is increased, since blocks with high variance

will have a high level of textural information which can

mask compression errors. The QP is allowed to change

between -3 and +7 relative to the nominal QP.

2.2.3 Perceptual distortion function

A well known problem when tuning towards PSNR is

that the encoded images may look to soft and blurry. This

is mainly due to that the distortion function only looks at

squared errors one sample at a time and there is no account

for other characteristics of the sample in combination with

its neighboring samples. When perceptual tuning is

applied in xvc, a different distortion function is used to

reduce the blurring and better match the perceived quality.

22596

The distortion function consists of a weighting of MSE

and structural similarity (SSIM) [13], with weights that

depend on the QP used to encode the block. By including

an SSIM term in the distortion function, the encoder is

more likely to make RDO decisions that maintain a similar

level of structural information as the original image.

3. Subjective quality

The xvc encoder includes support for two different

tuning options; perceptual tuning and PSNR tuning. The

default setting is perceptual tuning, and that is also the

setting that is used for the CLIC challenge [7]. Annex A.

shows a visual example of the difference between PSNR

tuning (Figure 2) and perceptual tuning (Figure 3) at the

same compressed image size. An image encoded with

JPEG at the same compressed image size is also included

for reference (Figure 1). The JPEG encoding was created

with FFmpeg [14] using “-q:v 26” to attain the right

compression level.

References

[1] Divideon, “Divideon Introduces xvc – A World-Class

Video Codec with a Revolutionary Licensing Model”

http://www.releasewire.com/press-

releases/divideon/release-863489.htm

[2] Divideon, “xvc – a world class video codec – with

indemnificaiton” https://xvc.io/

[3] Divideon, “xvc GitHub repository”

https://github.com/divideon/xvc

[4] ITU-T/ISO/IEC “H.264/14496-10 Advanced Video

Coding” https://www.itu.int/rec/T-REC-H.264

[5] ITU-T/ISO/IEC “H.265/23008-2 High Efficiency Video

Coding” https://www.itu.int/rec/T-REC-H.265

[6] JVET “JEM Software” https://jvet.hhi.fraunhofer.de/

[7] CLIC “Workshop and Challenge on Learned Image

Compression” http://www.compression.cc/

[8] ITU-R “BT.601 Studio encoding parameters of digital

television for standard 4:3 and wide screen 16:9 aspect

ratios“ https://www.itu.int/rec/R-REC-BT.601/en

[9] L. Vandevenne “LodePNG” http://lodev.org/lodepng/

[10] J. Chen, E. Alshina, G.-J. Sullivan, J.-R. Ohm, J. Boyce

“Algorithm Description of Joint Exploration Test Model 1”

Feb. 2016. http://phenix.int-evry.fr/jvet/doc_end_user/

current_document.php?id=2610

[11] G. Clare, F. Henry, J. Jung (Orange Labs) “Sign Data

Hiding” Nov. 2011, http://phenix.int-evry.fr/jct/

doc_end_user/current_document.php?id=3528

[12] G.J. Sullivan, T. Wiegand “Rate-distortion optimization for

video compression” IEEE Signal Processing Magazine 15

(6), 74-90. Nov. 1998

[13] Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli “Image

quality assessment: from error visibility to structural

similarity” IEEE Transactions on Image Processing,

Volume: 13, Issue: 4, April 2004

[14] FFmpeg “A complete, cross-platform solution to record,

convert and stream audio and video.” http://ffmpeg.org/

Annex A. Example images for visual comparison

Figure 1. JPEG at 0.65 bpp

Figure 2. xvc with PSNR tuning at 0.65 bpp

Figure 3. xvc with perceptual tuning at 0.65 bpp

32597

http://phenix.int-evry.fr/jct/doc_end_user/
http://phenix.int-evry.fr/jct/doc_end_user/
http://phenix.int-evry.fr/jvet/doc_end_user/current_document.php
http://phenix.int-evry.fr/jvet/doc_end_user/current_document
http://phenix.int-evry.fr/jvet/doc_end_user/current
http://phenix.int-evry.fr/jvet/doc_end_user/current
http://phenix.int-evry.fr/jvet/doc_end_user/
http://lodev.org/lodepng/
https://www.itu.int/rec/R-REC-BT.601/en
http://www.compression.cc/
https://jvet.hhi.fraunhofer.de/
https://www.itu.int/rec/T-REC-H.264
https://www.itu.int/rec/T-REC-H.264
https://github.com/divideon/xvc

