
Abstract

This  paper  describes  xvc  –  a  format  for  efficient

compression  of  visual  data  –  originally  developed  for

compression of video sequences, but in the context of this

paper applied to still  images.  The xvc codec is a block

based  lossy  codec  using  a  traditional  approach  for

prediction,  residual  representation  and  entropy  coding.

There are no elements of Machine Learning or Artificial

Neural Networks in the xvc encoder or decoder. The xvc

codec  offers  support  for  tuning  towards  PSNR  or

perceptual  quality.  The  images  submitted  for  the  CLIC

challenge and the descriptions included in this paper are

based on the perceptually tuned setting.

1. Introduction

The xvc codec is a compression format for video and

images that was first released in Septemeber 2017 [1]. The

source code of the xvc project  is publicly available,  and

can be accessed through xvc.io [2] or directly from GitHub

[3].  The  technology included  in  xvc  is  inspired  by  the

technology in AVC [4], HEVC [5] and JEM [6] but there

is no level of interoperability between xvc and any of these

codecs or exploration models, and xvc includes technology

that  is  not  present  in any of  the other  codecs.  The xvc

codec is designed to offer better compression performance

than other video codecs and image codecs that exists in the

market,  without  introducing   increased  computational

complexity for the decoder. 

2. Technology

The  compression  process  in  the  xvc  codec  can  be

divided into several parts, and each of these parts will be

described in this paper. It should be noted that several of

these parts have corresponding processing steps in both the

encoder and the decoder, but there are some steps that are

only performed in the encoder.  Section 2.1  presents  the

parts  which  are  common  or  corresponding  in  both  the

encoder  and  the decoder,  while section 2.2  presents  the

steps that are only performed in the encoder.

2.1. Processing parts common in encoder and decoder 

2.1.1 Color conversion

The input sample data used in the CLIC challenge [7] is

represented as RGB data with 8-bit sample depth. In order

to  decorrelate  the  color  information,  the  RGB  data  is

converted to YUV data (one luma channel and two chroma

channels,  sometimes  denoted  Y'CbCr)  using  the  color

matrix defined in BT.601 [8]. Internally in the xvc encoder

and  decoder,  the  YUV  data  is  stored  in  a  10-bit

representation  in  4:4:4  chroma  format,  i.e.  no

supbsampling  is  applied  to  the  chroma  channels.  After

decoding the compressed images, the xvc decoder converts

the YUV data back to RGB. For the purpose of the CLIC

challenge, the  lodePNG library [9]  is  used to store the

images as PNG files. 

2.1.2 Block partitioning

In  xvc, the data is processed in blocks of size 64x64

samples called Coding Tree Units (CTUs). Each CTU can

be split with a horizontal split, a vertical split, or a quad-

split, resulting in two or four Coding Units (CUs). A CU

can be split further, recursively forming a tree of coding

units and it is at the leafs of this tree that prediction and

transform is  applied.  Each  CTU consists  of  one  coding

unit tree for luma and another coding unit tree shared by

the two chroma channels.

2.1.3 Prediction

Sample data in a CU is predicted from previously coded

CUs above and/or to the left of the current CU. The xvc

codec supports DC prediction, 65 different angular intra

prediction  modes  and  a  specific  mode  called  “planar

mode” which uses a bi-linear weighting function to predict

each sample in the current CU, based on the neighboring

samples in adjacent CUs.

2.1.4 Cross component prediction

Even  though  a  transformation  from  RGB  to  YUV

reduces correlation between the different color channels, it

is still quite common that some level of correlation exists

between the luma channel and the two chroma channels,

for example at an object boundary. In xvc, this correlation

is  exploited  in  a  specific  mode  that  constructs  a  linear

model  for  predicting chroma information from the luma

information [10].
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2.1.5 Transforms and quantization

The difference between the original sample values and

the predicted sample values is called the residual. Residual

data is transformed using one of several two-dimensional

separable transforms in xvc. In total there are five different

DCT-based  and  DST-based  transforms available  in xvc.

The transform coefficients are quantized and signaled in

reverse order in subblocks consisting of 4x4 coefficients

and with a scanning pattern that depends on the prediction

direction. In  the decoder,  the inverse process is applied,

where the coefficients are  first  parsed,  then dequantized

and  then  transformed  with  the  inverse  transform.  A

quantization parameter (QP) is used to determine how the

transform coefficients are interpreted. A higher QP means

larger steps between the coded values which leads to lower

quality and lower compressed image size. When xvc is run

with perceptual tuning, different QP values are  used for

different CTUs as described in section 2.2.2.

2.1.6 Sign data hiding

The concept of Sign Data Hiding was proposed during

the HEVC standardization [11] and included in the HEVC

specification. The concept exploits the fact that among a

set  of  non-zero  coefficients  it  is  typically  possible  to

change the rounding of on of the coefficients with very

minor impact on the resulting residual. By calculating the

combined parity (odd or even) of the absolute value of all

coefficients in a 4x4 subblock,  the sign of  one of  these

coefficients can be hidden. If the parity is “wrong”, one of

the coefficients will be changed and rounded differently to

produce the right parity, and thereby the right sign.

2.1.7 Entropy coding

The xvc codec uses a context adaptive binary arithmetic

coder  (CABAC) which is  the  same entropy coder  as  is

used in AVC [4] and HEVC [5]. In CABAC, all symbols

are  translated  to  binary  representations  for  which  the

probabilities  are  adjusted  throughout  the  coding  of  a

picture.

2.1.8 Deblocking

Since the sample data is processed in blocks, there is a

risk that edges will become visible, especially at high QP

levels.  By  analyzing  the  edges  between  different  CUs,

different amount of edge filtering can be applied based on

the sample values so as to remove visual blocking artifacts

without  significantly  blurring  or  distorting  image

information.

2.2. Processing parts only present in encoder

There  are  several  processing  steps  in  xvc  that  are

performed  in  the  encoder  for  which  there  is  no

corresponding processing steps in the decoder. This causes

the  encoder  to  be  significantly  more  computational

complex compared to the decoder.

2.2.1 Rate-Distortion Optimization

One of the most important concepts  in modern video

encoders is Rate-Distortion Optimization [12]. The central

idea in RDO is to perform evaluation of several different

options during the encoding process and select the option

that minimizes the cost function:
J =D+λ R

(1)

where  J  is  the  cost,  D  is  distortion,  λ is  a  variable

derived from the QP and R is the rate (estimated or actual).

When rate-distortion optimization is applied, the encoding

process will result  in the best possible quality at as low

rate  as  possible,  but  it  is  typically  not  possible  to

determine in advance what the level of the quality or what

the rate will be. However, the QP parameter (and thereby

the lambda) can be changed during encoding or in an outer

loop to reach a specific target quality or target rate. In the

CLIC challenge [7] there is a requirement to not exceed a

total  size for  all  pictures  corresponding to  0.15  bits per

pixel. For xvc, this is achieved by encoding all pictures at

several different QP levels and selecting a set that gives as

high quality as possible without exceeding the limit. For

tuning  towards  PSNR  this  process  can  be  completely

automated, but for perceptual tuning, visual inspection was

also performed to ensure a consistent quality level among

the pictures, since the adaptive QP method described in the

next section doesn't include any normalization step.

2.2.2 Adaptive QP selection

Block  based  coding  formats  such  as  JPEG,  AVC,

HEVC  and  xvc  gives  rise  to  compression  errors  that

become more  visible at  lower rates.  These  compression

artifacts are typically identified as “blockiness”, “ringing”,

“bluriness” etc.  and they are  typically more apparent  in

areas  with  low  textural  information  (flat  areas)  even

though the distortion,  when measured with mean square

error (MSE), might be of similar magnitude in all areas of

the picture. When perceptual tuning is applied in xvc, the

QP for each CTU is selected based on the median variance

of the 16x16 subblocks of the CTU. If the variance is low,

the QP is decreased since low variance corresponds to low

level of textural information. Conversely, if the variance is

high, the QP is increased, since blocks with high variance

will have a high level of textural information which can

mask compression errors.  The QP is allowed to change

between -3 and +7 relative to the nominal QP. 

2.2.3 Perceptual distortion function

A well known problem when tuning towards PSNR is

that the encoded images may look to soft and blurry. This

is mainly due to that the distortion function only looks at

squared errors one sample at a time and there is no account

for other characteristics of the sample in combination with

its  neighboring  samples.  When  perceptual  tuning  is

applied in xvc, a different distortion function is used to

reduce the blurring and better match the perceived quality.
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The distortion function consists  of  a  weighting of  MSE

and  structural  similarity (SSIM)  [13],  with weights  that

depend on the QP used to encode the block. By including

an SSIM term in the distortion function,  the encoder  is

more likely to make RDO decisions that maintain a similar

level of structural information as the original image.

3. Subjective quality

The  xvc  encoder  includes  support  for  two  different

tuning options; perceptual tuning and PSNR tuning. The

default  setting is  perceptual  tuning,  and  that  is  also  the

setting that is used for the CLIC challenge [7]. Annex A.

shows a visual example of the difference between PSNR

tuning (Figure 2) and perceptual tuning (Figure 3) at the

same  compressed  image  size.  An  image  encoded  with

JPEG at the same compressed image size is also included

for reference (Figure 1). The JPEG encoding was created

with  FFmpeg  [14]  using  “-q:v  26”  to  attain  the  right

compression level.
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Annex A. Example images for visual comparison

Figure 1. JPEG at 0.65 bpp

Figure 2. xvc with PSNR tuning at 0.65 bpp

Figure 3. xvc with perceptual tuning at 0.65 bpp
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