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Abstract

We present an end-to-end trainable image compression
framework for low bit-rate image compression. Our method
is based on variational autoencoder, which consists of a
nonlinear encoder transformation, a uniform quantizer, a
nonlinear decoder transformation and a post-processing
module. The prior probability of compressed representa-
tion is modeled by a Laplacian distribution using a hyper-
prior autoencoder and it is trained jointly with the trans-
formation autoencoder. In order to remove the compres-
sion artifacts and blurs for low bit-rate images, an effective
convolution based post-processing module is proposed. Fi-
nally, a rate control algorithm is applied to allocate the bits
adaptively for each image, considering the bits constraint
of the challenge. Across the experimental results on val-
idation and test sets, the optimized framework trained by
perceptual loss generates the best performance in terms of
MS-SSIM. The results also indicate that the proposed post-
processing module can improve compression performance
for both deep learning based and traditional methods, with
the highest PSNR as 32.09 at the bit-rate of 0.15.

1. Introduction

Recently, machine learning methods have been applied
for lossy image compression and promising results have
been achieved using autoencoder [3, 4, 11, 12,7, 2]. A typ-
ical neural network based image compression framework
is composed of modules such as autoencoder, quantization,
prior distribution model, rate estimation and rate-distortion
optimization. Autoencoders are designed to transform im-
age pixels x to data in code space y, which is composed
of an encoder f. and a decoder f;. A vector of image in-
tensities x € R" is transformed to code space via encoder
y = fe(x). After it, with quantization function § = Q(y),
we yield a discrete-valued vector § by processing repre-
sentation y. Then entropy coding methods such as arith-
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metic coding [8] is used to compress ¢ lossless and the bit
streams for transmission are generated. After receiving the
bit streams, the quantized representation after being entropy
decoding is transformed back to the image space Z using a
decoder & = f. ().

It is apparent that the prior probability model p;(g) (also
known as entropy model) of representation ¢ is crucial for
arithmetic coding. The actual marginal distribution of gy
which depends on the distributions of images is unknown.
So we estimate it by the prior distribution. The prior distri-
butions can be formulated by a parametric model and the pa-
rameters are learnt to fit the data. Given the entropy model,
the lower bound of the rate is determined by the entropy of
discrete prior distribution of §. The actual rates achieved
by a properly designed entropy code are only slightly larger
than the entropy: R = 3, [~logapy, (Q(fe(x)))]

The role of rate-distortion optimization is to make the
trade-off between the code length R and the distortion D
between original image x and reconstructed image z. D
can be modeled using mean squared error (MSE) D =
|z — :%Hg or the measure of perceptual distortion such as
MS—SSIM [13]. Tt is obvious that if § is more central-
ized, then entropy R is smaller, but the representation abil-
ity of network is deteriorated and D may be increased. So
a weighted sum of the rate and distortion that measures
R 4+ AD is optimized in an end-to-end way. We can con-
clude that the joint optimization of prior model py () and
quantization is the most important technique in an effective
compression system. For one thing, accurate estimation of
the prior distribution of quantized representation ¢ is ben-
eficial for constraining the real marginal distribution of gy
and R. For another, an accurate prior model can make the
adaptive arithmetic coding more effective in the encoding
and decoding procedure.

The proposed image compression framework is based on
previous methods [3, 4]. Different from these methods,
an autoencoder with pyramidal encoder and more effec-
tive convolution structures is designed to improve the com-
pression performance in our architecture. Moreover, the
prior probability of the compressed representation is mod-
eled precisely using a parameterized zero-mean Laplacian
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distribution, whose parameters are learned by a hyperprior
autoencoder. Considering the observation that the recon-
struction will suffer from blurs and will not be appealing to
human eyes if the networks are only learned by maintain-
ing per-pixel similarity at low bit-rate. We use an effective
M S —SSIM based loss function to measure the perceptual
loss and to train a compression codec for perceptual quality.
Finally, a convolution based post-processing module is used
to improve the reconstruction quality. Considering the 0.15
bpp constraints in compressing test and validation images in
the challenge, a rate control algorithm is designed to select
the best compression parameter for each image.

2. The Proposed Framework for Image Com-
pression

2.1. Encoder and Decoder

Our compressive autoencoder with unbalanced structure
is shown in Figure 1. The encoder f. and decoder f; are
composed of convolutions and GDN/IGDN nonlineari-
ties. The GDN/IGDN implement a type of local divisive
normalization transformation that has been proven to be
particularly suitable for density modeling and images
compression [3, 4]. In the encoder, a pyramidal feature
fusion structure is proposed to learn optimal, nonlinear
features for each scale. The features of intermediate layers
with £, 1 and % of the original size are downsampled to
1—16 via convolutions. Then the downsampled features are
concatenated and a 1 x 1 convolution is applied to generate
the encoded representation y. In order to decrease the
model parameters and reduce the computational costs, we
have replaced all 5 x 5 convolutions used in [3, 4] with two
3 x 3 convolutions. As described in [9], replacing the 5 x 5
convolutions with two layers of 3 x 3 convolutions can
reduce the parameter count by sharing the weights between
adjacent tiles. We also found this replacement can improve
the PSNR by 0.5 to 1 dB and reduce the computation costs.

2.2. Quantization

Assuming the transformations are powerful enough, the
quantization representing values are at the center of the in-
teger bins, that is §; = round(y;). The marginal density
of ¢; can be represented as a discrete probability mass with
weights equal to the probability mass function [3]:

n+0.5
Pgi (Z)z = TL) = / Pyi (t)dt (1)
n—0.5
However, the gradient descent of round quantization func-
tion is ineffective because the derivatives of the round quan-
tization function are zero almost everywhere. So in the
training process, the quantizer is replaced with an additive
uniform noise, that is §; = y; + €, where € is random
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Figure 1. Illustration of the variational autoencoder architecture
used in this paper. Convolution parameters are denoted as num-
ber of filter x kernel height X kernel width/ down or upsampling
stride, where | indicates downsampling and 1 indicates upsam-
pling. AE, AD represent arithmetic encoder and arithmetic de-

coder.
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Figure 2. Illustration of the autoencoder architecture for hyperprior
autoencoder.

noise. It is obvious that the entropy of y can be used as
an approximation of the entropy of y. Hence we can use
9; = round(y;) as the quantization operation in the test
stage and the rates can be estimated precisely as well.

2.3. Prior Distribution and Rate Estimation

As shown in [6] that the gradients of the natural image
are commonly considered as following Laplacian distribu-
tion, so we model the probability p; of each feature g; as a
zero-centered Laplacian distribution with the standard devi-
ation ¢; in our framework:

py=(912) = [[(Baplacian(0,02) * n(~3, $)G0): @

i

where 0 = hg(2) and hy(2) is the decoder of hyper
prior. o; is taken as a hyperprior to capture the spatial
dependencies between elements in y [4] and it is learned
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(b) post-processing architecture

Figure 3. (a) The residual block. (b) The post-processing architec-
ture is composed of two convolutional layers and 6 residual blocks.

by an autoencoder as well. As illustrated in Figure 2, the
compressed representation y is fed into the hyperprior
encoder which summarizes the distribution of standard
deviations in z = he(y). z is then quantized £ = Q(z),
compressed and transmitted as side information. The
decoder estimates the parameter 0 = hg(2) and o is
used to form the Laplacian distribution for rate estimation
and for compressing the quantized representation ¢ using
entropy coding. Empirically, we found that modeling the
distribution using Laplacian distribution performs better
than modeling it as a Gaussian distribution as Balle did
[4] (0.1dB improvement at 0.15bpp). This performance
gain demonstrates that Laplacian distribution is closer to
the practical distribution of pixels in the natural image
compared to a Gaussian distribution. As to the distribution
of Z, because there is no prior knowledge for 2, we model
it as a non-parametric and fully factorized density model,
similar to the strategy used in [4]:

peto210) = [T(Poun @) 5 05, )G, @
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where the vector 1); represents the parameters of each uni-
variate distribution P,,,,. Finally, the compression rates
are composed of two part: rate 12, of compressed repre-
sentation ¢ and rate R, of compressed side information 2.
These rates are defined as follows:

R, = Z *ZOQQ(py}\é(g'é))v

K2

R, = Z —loga(pz,1v (2[1))

%

“)

2.4. Post-processing

A typical drawback of reconstructed images with low
bit-rate is that there exists compression artifacts and
smoother texture details. In order to improve the quality
of reconstructed images with low bit-rate, an effective
post-processing module is designed (as illustrated in

Figure 3). The proposed architecture applies residual
blocks as the backbone, which has been widely used in
low-level applications such as super-resolution [10] and
denoising [ 14]. It is noted that as post-processing works on
full-resolution images, increasing the depth of network can
increase the computational costs significantly. So we only
use six residual blocks for cascaded details enhancement in
our implementation. We believe the compression perfor-
mance can be further improved by deeper post-processing
architecture.

2.5. Optimized Rate Control

Rate-Distortion optimization is a common strategy in al-
gorithms such as HEVC and JPEG2000. Considering the
bits constraint, a rate control optimization problem is de-
fined to allocate the bits more effectively for each image:

N
minjEM ZDJ(Tufz) st. Z Rj < Rmama (5)

i=1 i

where D represents the distortion between original image
x; and the reconstructed image ;. M is the vector set
which contains all possible quality configurations for the
set of images. IV is the image number. D; and RR; are the
distortions and rates under configuration j. The best quality
configuration is selected for each image via optimizing Eq
(5) in our implementation.

3. Experimental Results

1500 high-quality images licensed under creative com-
mons were downloaded from flickr.com. These images
were downsampled to 2000 x 2000 pixels and saved as
lossless PNGs to avoid compression artefacts. From these
downloaded images, we extracted 0.5 million patches with
size 256 x 256 to train the network. We use two kinds of dis-
tortion measures: mean square error and perceptional loss
to train the autoencoders with loss function as:

L=AD+ R, + R, (6)

where D = ||z — &||3 for MSE and D = 0.2 x ||z — &||3 +
0.8 X (1 — Lypsssim) for perceptional loss where Ly, sssim
is as defined in [13]. The results for validation set which
contains 102 images are reported in Table 1. For distortion
as MSE loss, eight models with A = 96, 144, 192, 210,
230, 384, 512 and 768 are trained. Then, compressions
with three settings are compared on the validation set. A
single model setting (CNN+MSE) trained with A = 144
achieves PSNR of 29.08. Rate control with eight mod-
els (CNN+MSE+RC) can improve the performance signif-
icantly and allow us to obtain a PSNR of 30.37. Setting
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PSNR | MS-SSIM | bit rate | Decoding Time
CNN+MSE (chunlei) 29.08 | 0.941 0.113 2776120
CNN+MSE+RC 30.37 | 0.952 0.15 3486646
CNN+MSE+RC+POST (tucodecTNGcenn) | 30.47 | 0.953 0.149 20781843
CNN+MS-SSIM+RC (tucodecTNGcenndp) | 28.75 | 0.968 0.15 4486646
BPG 30.85 | 0.948 0.149 88043
H266 31.66 | 0.957 0.147 602012
BPG+POST 3145 | 0.953 0.15 16383240
H266+POST (tucodecTNG) 32.09 | 0.959 0.15 16514127

Table 1. Evaluation results on CLIC 2018 validation dataset.

PSNR | MS-SSIM | bitrate | Decoding Time
tucodecTNGenndp | 27.67 0.964 0.15 15412641
tucodecTNGenn 29.17 0.948 0.15 64602017
tucodecTNG 30.76 0.955 0.15 46535029

Table 2. Evaluation results on CLIC 2018 test dataset.

with post-processing (CNN+MSE+RC+POST) can achieve
another 0.1 dB gain for PSNR. For distortion as percep-
tional loss, six models with A = 4,6,8,10,16 and 32 are
trained, the setting with rate control (CNN+MS-SSIM+RC)
can generate an MS-SSIM of 0.968 on the validation set,
which is the highest in the leaderboard. Empirically, we
found that higher PSNR and MS-SSIM metrics can be ob-
tained when the weighted sum of per-pixel loss (MSE) and
structural loss is used rather than using only structural loss.
To evaluate the role of post-processing module more com-
prehensively, we compared the results of two baseline im-
age compression algorithms BPG [5] and our modified ver-
sion of H266 [1], the results for multiple QPs are gener-
ated for rate control. It can be seen that post-processing
can improve the PSNR and MS-SSIM metrics for both al-
gorithms. In the test stage, we have submitted three results,
tucodecTNGcenn, tucodecTNGenn4p and tucodecTNG for
compressing 286 images in the test set and the final results
are reported in Table 2.

4. Conclusion

In this work, a novel autoencoder based low bit-rate im-
age compression framework is presented. The compressed
representation y is generated by a pyramidal encoder for
fusing features of multiple scales and the distribution of
quantized representation ¢ is modeled using a zero-mean
Laplacian distribution, which leads to better performance
than when modeling as a Gaussian distribution as Balle did
[4]. We observed that an end-to-end trained autoencoder
has the advantage of being optimized for arbitrary metrics,
such as PSNR or MS-SSIM. Training with perceptual loss
enables us to achieve the best performance, in terms of
MS-SSIM compared with methods listed in the leader-
board. Notably, compression performance can be improved

significantly by the proposed post-processing module using
simple convolutional architecture, which is proved to be
effective, as can be seen by the increased PSNR by 0.2 to
0.6 dB. However high computation cost is a drawback of
the convolution based framework. Existing codecs often
benefit from specific hardware and optimized implemen-
tation. In future work, we would like to explore a more
effective compressive autoencoder by optimizing network
architecture and developing applications on hardware chips
optimized for convolutional neural networks.
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