
Variational Autoencoder for Low Bit-rate Image Compression

Lei Zhou1,2*, Chunlei Cai1,3*, Yue Gao1, Sanbao Su1, Junmin Wu1

1Tucodec Inc, 2 University of shanghai for science and technology,3 Shanghai Jiao Tong University

{zhoulei,caichunlei,gaoyue,susanbao,wujunmin}@tucodec.com ∗

Abstract

We present an end-to-end trainable image compression

framework for low bit-rate image compression. Our method

is based on variational autoencoder, which consists of a

nonlinear encoder transformation, a uniform quantizer, a

nonlinear decoder transformation and a post-processing

module. The prior probability of compressed representa-

tion is modeled by a Laplacian distribution using a hyper-

prior autoencoder and it is trained jointly with the trans-

formation autoencoder. In order to remove the compres-

sion artifacts and blurs for low bit-rate images, an effective

convolution based post-processing module is proposed. Fi-

nally, a rate control algorithm is applied to allocate the bits

adaptively for each image, considering the bits constraint

of the challenge. Across the experimental results on val-

idation and test sets, the optimized framework trained by

perceptual loss generates the best performance in terms of

MS-SSIM. The results also indicate that the proposed post-

processing module can improve compression performance

for both deep learning based and traditional methods, with

the highest PSNR as 32.09 at the bit-rate of 0.15.

1. Introduction

Recently, machine learning methods have been applied

for lossy image compression and promising results have

been achieved using autoencoder [3, 4, 11, 12, 7, 2]. A typ-

ical neural network based image compression framework

is composed of modules such as autoencoder, quantization,

prior distribution model, rate estimation and rate-distortion

optimization. Autoencoders are designed to transform im-

age pixels x to data in code space y, which is composed

of an encoder fe and a decoder fd. A vector of image in-

tensities x ∈ RN is transformed to code space via encoder

y = fe(x). After it, with quantization function ŷ = Q(y),
we yield a discrete-valued vector ŷ by processing repre-

sentation y. Then entropy coding methods such as arith-

∗The first two authors share first-authorship

metic coding [8] is used to compress ŷ lossless and the bit

streams for transmission are generated. After receiving the

bit streams, the quantized representation after being entropy

decoding is transformed back to the image space x̂ using a

decoder x̂ = fe(ŷ).
It is apparent that the prior probability model pŷ(ŷ) (also

known as entropy model) of representation ŷ is crucial for

arithmetic coding. The actual marginal distribution of ŷ

which depends on the distributions of images is unknown.

So we estimate it by the prior distribution. The prior distri-

butions can be formulated by a parametric model and the pa-

rameters are learnt to fit the data. Given the entropy model,

the lower bound of the rate is determined by the entropy of

discrete prior distribution of ŷ. The actual rates achieved

by a properly designed entropy code are only slightly larger

than the entropy: R =
∑
i[−log2pŷi(Q(fe(x)))].

The role of rate-distortion optimization is to make the

trade-off between the code length R and the distortion D

between original image x and reconstructed image x̂. D

can be modeled using mean squared error (MSE) D =
||x− x̂||

2

2
or the measure of perceptual distortion such as

MS−SSIM [13]. It is obvious that if ŷ is more central-

ized, then entropy R is smaller, but the representation abil-

ity of network is deteriorated and D may be increased. So

a weighted sum of the rate and distortion that measures

R + λD is optimized in an end-to-end way. We can con-

clude that the joint optimization of prior model pŷ(ŷ) and

quantization is the most important technique in an effective

compression system. For one thing, accurate estimation of

the prior distribution of quantized representation ŷ is ben-

eficial for constraining the real marginal distribution of ŷ

and R. For another, an accurate prior model can make the

adaptive arithmetic coding more effective in the encoding

and decoding procedure.

The proposed image compression framework is based on

previous methods [3, 4]. Different from these methods,

an autoencoder with pyramidal encoder and more effec-

tive convolution structures is designed to improve the com-

pression performance in our architecture. Moreover, the

prior probability of the compressed representation is mod-

eled precisely using a parameterized zero-mean Laplacian

12617

distribution, whose parameters are learned by a hyperprior

autoencoder. Considering the observation that the recon-

struction will suffer from blurs and will not be appealing to

human eyes if the networks are only learned by maintain-

ing per-pixel similarity at low bit-rate. We use an effective

MS−SSIM based loss function to measure the perceptual

loss and to train a compression codec for perceptual quality.

Finally, a convolution based post-processing module is used

to improve the reconstruction quality. Considering the 0.15
bpp constraints in compressing test and validation images in

the challenge, a rate control algorithm is designed to select

the best compression parameter for each image.

2. The Proposed Framework for Image Com-

pression

2.1. Encoder and Decoder

Our compressive autoencoder with unbalanced structure

is shown in Figure 1. The encoder fe and decoder fd are

composed of convolutions and GDN/IGDN nonlineari-

ties. The GDN/IGDN implement a type of local divisive

normalization transformation that has been proven to be

particularly suitable for density modeling and images

compression [3, 4]. In the encoder, a pyramidal feature

fusion structure is proposed to learn optimal, nonlinear

features for each scale. The features of intermediate layers

with 1

2
, 1

4
and 1

8
of the original size are downsampled to

1

16
via convolutions. Then the downsampled features are

concatenated and a 1× 1 convolution is applied to generate

the encoded representation y. In order to decrease the

model parameters and reduce the computational costs, we

have replaced all 5× 5 convolutions used in [3, 4] with two

3× 3 convolutions. As described in [9], replacing the 5× 5
convolutions with two layers of 3 × 3 convolutions can

reduce the parameter count by sharing the weights between

adjacent tiles. We also found this replacement can improve

the PSNR by 0.5 to 1 dB and reduce the computation costs.

2.2. Quantization

Assuming the transformations are powerful enough, the

quantization representing values are at the center of the in-

teger bins, that is ŷi = round(yi). The marginal density

of ŷi can be represented as a discrete probability mass with

weights equal to the probability mass function [3]:

Pŷi(ŷi = n) =

∫ n+0.5

n−0.5

Pyi(t)dt (1)

However, the gradient descent of round quantization func-

tion is ineffective because the derivatives of the round quan-

tization function are zero almost everywhere. So in the

training process, the quantizer is replaced with an additive

uniform noise, that is ỹi = yi + ǫ, where ǫ is random

y

ŷ

ŷ

Figure 1. Illustration of the variational autoencoder architecture

used in this paper. Convolution parameters are denoted as num-

ber of filter × kernel height × kernel width/ down or upsampling

stride, where ↓ indicates downsampling and ↑ indicates upsam-

pling. AE, AD represent arithmetic encoder and arithmetic de-

coder.

σ = hd(ẑ)

z = he(y)

y

σ

z

ẑ

ẑ

Figure 2. Illustration of the autoencoder architecture for hyperprior

autoencoder.

noise. It is obvious that the entropy of ỹ can be used as

an approximation of the entropy of ŷ. Hence we can use

ŷi = round(yi) as the quantization operation in the test

stage and the rates can be estimated precisely as well.

2.3. Prior Distribution and Rate Estimation

As shown in [6] that the gradients of the natural image

are commonly considered as following Laplacian distribu-

tion, so we model the probability pỹ of each feature ỹi as a

zero-centered Laplacian distribution with the standard devi-

ation σi in our framework:

pỹ|ẑ(ỹ|ẑ) =
∏
i

(Laplacian(0, σ2
i) ∗ µ(−

1

2
,
1

2
))(ỹi), (2)

where σ = hd(ẑ) and hd(ẑ) is the decoder of hyper

prior. σi is taken as a hyperprior to capture the spatial

dependencies between elements in ỹ [4] and it is learned

2618

×6

(a) Residual Block

(b) post-processing architecture

Figure 3. (a) The residual block. (b) The post-processing architec-

ture is composed of two convolutional layers and 6 residual blocks.

by an autoencoder as well. As illustrated in Figure 2, the

compressed representation ỹ is fed into the hyperprior

encoder which summarizes the distribution of standard

deviations in z = he(y). z is then quantized ẑ = Q(z),
compressed and transmitted as side information. The

decoder estimates the parameter σ = hd(ẑ) and σ is

used to form the Laplacian distribution for rate estimation

and for compressing the quantized representation ŷ using

entropy coding. Empirically, we found that modeling the

distribution using Laplacian distribution performs better

than modeling it as a Gaussian distribution as Balle did

[4] (0.1dB improvement at 0.15bpp). This performance

gain demonstrates that Laplacian distribution is closer to

the practical distribution of pixels in the natural image

compared to a Gaussian distribution. As to the distribution

of ẑ, because there is no prior knowledge for ẑ, we model

it as a non-parametric and fully factorized density model,

similar to the strategy used in [4]:

pẑ|ψ(ẑ|ψ) =
∏
i

(Pzi|ψi
(ψi) ∗ µ(−

1

2
,
1

2
))(ẑi), (3)

where the vector ψi represents the parameters of each uni-

variate distribution Pzi|ψi
. Finally, the compression rates

are composed of two part: rate Ry of compressed repre-

sentation ŷ and rate Rz of compressed side information ẑ.

These rates are defined as follows:

Ry =
∑
i

−log2(pŷi|ẑ(ŷ|ẑ)),

Rz =
∑
i

−log2(pẑi|ψ(ẑ|ψ))
(4)

2.4. Post­processing

A typical drawback of reconstructed images with low

bit-rate is that there exists compression artifacts and

smoother texture details. In order to improve the quality

of reconstructed images with low bit-rate, an effective

post-processing module is designed (as illustrated in

Figure 3). The proposed architecture applies residual

blocks as the backbone, which has been widely used in

low-level applications such as super-resolution [10] and

denoising [14]. It is noted that as post-processing works on

full-resolution images, increasing the depth of network can

increase the computational costs significantly. So we only

use six residual blocks for cascaded details enhancement in

our implementation. We believe the compression perfor-

mance can be further improved by deeper post-processing

architecture.

2.5. Optimized Rate Control

Rate-Distortion optimization is a common strategy in al-

gorithms such as HEVC and JPEG2000. Considering the

bits constraint, a rate control optimization problem is de-

fined to allocate the bits more effectively for each image:

minj∈M

N∑
i=1

Dj(xi, x̂i) st.
∑
i

Rij < Rmax, (5)

where D represents the distortion between original image

xi and the reconstructed image x̂i. M is the vector set

which contains all possible quality configurations for the

set of images. N is the image number. Dj and Rj are the

distortions and rates under configuration j. The best quality

configuration is selected for each image via optimizing Eq

(5) in our implementation.

3. Experimental Results

1500 high-quality images licensed under creative com-

mons were downloaded from flickr.com. These images

were downsampled to 2000 × 2000 pixels and saved as

lossless PNGs to avoid compression artefacts. From these

downloaded images, we extracted 0.5 million patches with

size 256×256 to train the network. We use two kinds of dis-

tortion measures: mean square error and perceptional loss

to train the autoencoders with loss function as:

L = λD +Ry +Rz, (6)

where D = ||x− x̂||
2

2
for MSE and D = 0.2×||x− x̂||

2

2
+

0.8 × (1 − Lmsssim) for perceptional loss where Lmsssim
is as defined in [13]. The results for validation set which

contains 102 images are reported in Table 1. For distortion

as MSE loss, eight models with λ = 96, 144, 192, 210,

230, 384, 512 and 768 are trained. Then, compressions

with three settings are compared on the validation set. A

single model setting (CNN+MSE) trained with λ = 144
achieves PSNR of 29.08. Rate control with eight mod-

els (CNN+MSE+RC) can improve the performance signif-

icantly and allow us to obtain a PSNR of 30.37. Setting

2619

PSNR MS-SSIM bit rate Decoding Time

CNN+MSE (chunlei) 29.08 0.941 0.113 2776120

CNN+MSE+RC 30.37 0.952 0.15 3486646

CNN+MSE+RC+POST (tucodecTNGcnn) 30.47 0.953 0.149 20781843

CNN+MS-SSIM+RC (tucodecTNGcnn4p) 28.75 0.968 0.15 4486646

BPG 30.85 0.948 0.149 88043

H266 31.66 0.957 0.147 602012

BPG+POST 31.45 0.953 0.15 16383240

H266+POST (tucodecTNG) 32.09 0.959 0.15 16514127

Table 1. Evaluation results on CLIC 2018 validation dataset.

PSNR MS-SSIM bit rate Decoding Time

tucodecTNGcnn4p 27.67 0.964 0.15 15412641

tucodecTNGcnn 29.17 0.948 0.15 64602017

tucodecTNG 30.76 0.955 0.15 46535029

Table 2. Evaluation results on CLIC 2018 test dataset.

with post-processing (CNN+MSE+RC+POST) can achieve

another 0.1 dB gain for PSNR. For distortion as percep-

tional loss, six models with λ = 4,6,8,10,16 and 32 are

trained, the setting with rate control (CNN+MS-SSIM+RC)

can generate an MS-SSIM of 0.968 on the validation set,

which is the highest in the leaderboard. Empirically, we

found that higher PSNR and MS-SSIM metrics can be ob-

tained when the weighted sum of per-pixel loss (MSE) and

structural loss is used rather than using only structural loss.

To evaluate the role of post-processing module more com-

prehensively, we compared the results of two baseline im-

age compression algorithms BPG [5] and our modified ver-

sion of H266 [1], the results for multiple QPs are gener-

ated for rate control. It can be seen that post-processing

can improve the PSNR and MS-SSIM metrics for both al-

gorithms. In the test stage, we have submitted three results,

tucodecTNGcnn, tucodecTNGcnn4p and tucodecTNG for

compressing 286 images in the test set and the final results

are reported in Table 2.

4. Conclusion

In this work, a novel autoencoder based low bit-rate im-

age compression framework is presented. The compressed

representation y is generated by a pyramidal encoder for

fusing features of multiple scales and the distribution of

quantized representation ŷ is modeled using a zero-mean

Laplacian distribution, which leads to better performance

than when modeling as a Gaussian distribution as Balle did

[4]. We observed that an end-to-end trained autoencoder

has the advantage of being optimized for arbitrary metrics,

such as PSNR or MS-SSIM. Training with perceptual loss

enables us to achieve the best performance, in terms of

MS-SSIM compared with methods listed in the leader-

board. Notably, compression performance can be improved

significantly by the proposed post-processing module using

simple convolutional architecture, which is proved to be

effective, as can be seen by the increased PSNR by 0.2 to

0.6 dB. However high computation cost is a drawback of

the convolution based framework. Existing codecs often

benefit from specific hardware and optimized implemen-

tation. In future work, we would like to explore a more

effective compressive autoencoder by optimizing network

architecture and developing applications on hardware chips

optimized for convolutional neural networks.

References

[1] H266 (https://de.wikipedia.org/wiki/h.266/), 2018. 4

[2] E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli, R. Timofte, L. Benini,

and L. V. Gool. Soft-to-hard vector quantization for end-to-end learning com-

pressible representations. In Advances in Neural Information Processing Sys-

tems, pages 1141–1151, 2017. 1

[3] J. Ballé, V. Laparra, and E. P. Simoncelli. End-to-end optimized image com-

pression. arXiv preprint arXiv:1611.01704, 2016. 1, 2

[4] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston. Variational image

compression with a scale hyperprior. arXiv preprint arXiv:1802.01436, 2018.

1, 2, 3, 4

[5] F. Bellard. Bpg image format (http://bellard. org/bpg/), 2017. 4

[6] A. K. Jain. Fundamentals of digital image processing, 1989. 2

[7] O. Rippel and L. Bourdev. Real-time adaptive image compression. arXiv

preprint arXiv:1705.05823, 2017. 1

[8] J. Rissanen and G. Langdon. Universal modeling and coding. IEEE Transac-

tions on Information Theory, 27(1):12–23, 1981. 1

[9] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the

inception architecture for computer vision. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 2818–2826, 2016.

2

[10] Y. Tai, J. Yang, and X. Liu. Image super-resolution via deep recursive residual

network. In The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), volume 1, 2017. 3

[11] L. Theis, W. Shi, A. Cunningham, and F. Huszár. Lossy image compression

with compressive autoencoders. arXiv preprint arXiv:1703.00395, 2017. 1

[12] G. Toderici, D. Vincent, N. Johnston, S. J. Hwang, D. Minnen, J. Shor, and

M. Covell. Full resolution image compression with recurrent neural networks.

In Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference

on, pages 5435–5443. IEEE, 2017. 1

[13] Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale structural similarity

for image quality assessment. In Signals, Systems and Computers, 2004. Con-

ference Record of the Thirty-Seventh Asilomar Conference on, volume 2, pages

1398–1402. Ieee, 2003. 1, 3

[14] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond a gaussian de-

noiser: Residual learning of deep cnn for image denoising. IEEE Transactions

on Image Processing, 26(7):3142–3155, 2017. 3

2620

