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Abstract

We propose the use of dilated filters to construct an ag-

gregation module in a multicolumn convolutional neural

network for perspective-free counting. Counting is a com-

mon problem in computer vision (e.g. traffic on the street or

pedestrians in a crowd). Modern approaches to the count-

ing problem involve the production of a density map via re-

gression whose integral is equal to the number of objects

in the image. However, objects in the image can occur at

different scales (e.g. due to perspective effects) which can

make it difficult for a learning agent to learn the proper

density map. While the use of multiple columns to extract

multiscale information from images has been shown be-

fore, our approach aggregates the multiscale information

gathered by the multicolumn convolutional neural network

to improve performance. Our experiments show that our

proposed network outperforms the state-of-the-art on many

benchmark datasets, and also that using our aggregation

module in combination with a higher number of columns is

beneficial for multiscale counting.

1. Introduction

Learning to count the number of objects in an image is a

deceptively difficult problem with many interesting applica-

tions, such as surveillance [20], traffic monitoring [14] and

medical image analysis [22]. In many of these application

areas, the objects to be counted vary widely in appearance,

size and shape, and labeled training data is typically sparse.

These factors pose a significant computer vision and ma-

chine learning challenge.

Lempitsky et al. [15] showed that it is possible to learn to

count without learning to explicitly detect and localize in-

dividual objects. Instead, they propose learning to predict a

density map whose integral over the image equals the num-

ber of objects in the image. This approach has been adopted

by many later works (Cf. [18, 28]).

However, in many counting problems, such as those

counting cells in a microscope image, pedestrians in a

crowd, or vehicles in a traffic jam, regressors trained on a

single image scale are not reliable [18]. This is due to a

variety of challenges including overlap of objects and per-

spective effects which cause significant variance in object

shape, size and appearance.

The most successful recent approaches address this issue

by explicitly incorporating multi-scale information in the

network [18,28]. These approaches either combine multiple

networks which take input patches of different sizes [18]

or combine multiple filtering paths (“columns”) which have

different size filters [28].

Following on the intuition that multiscale integration is

key to achieving good counting performance, we propose

to incorporate dilated filters [25] into a multicolumn con-

volutional neural network design [28]. Dilated filters expo-

nentially increase the network’s receptive field without an

exponential increase in parameters, allowing for efficient

use of multiscale information. Convolutional neural net-

works with dilated filters have proven to provide compet-

itive performance in image segmentation where multiscale

analysis is also critical [25, 26]. By incorporating dilated

filters into the multicolumn network design, we greatly in-

crease the ability of the network to selectively aggregate

multiscale information, without the need for explicit per-

spective maps during training and testing. We propose the

“aggregated multicolumn dilated convolution network” or

AMDCN which uses dilations to aggregate multiscale in-

formation. Our extensive experimental evaluation shows

that this proposed network outperforms previous methods

on many benchmark datasets.

2. Related Work

Counting using a supervised regressor to formulate a

density map was first shown by [15]. In this paper, Lem-

pitsky et al. show that the minimal annotation of a single

dot blurred by a Gaussian kernel produces a sufficient den-

sity map to train a network to count. All of the counting

methods that we examine as well as the method we use in
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Figure 1. Fully convolutional architecture diagram (not to scale). Arrows show separate columns that all take the same input. At the end

of the columns, the feature maps are merged (concatenated) together and passed to another series of dilated convolutions: the aggregator,

which can aggregate the multiscale information collected by the columns [25]. The input image is I with C channels. The output single

channel density map is D, and integrating over this map (summing the pixels) results in the final count. Initial filter sizes are labeled with

brackets or lines. Convolution operations are shown as flat rectangles, feature maps are shown as prisms. The number below each filter

represents the dilation rate (1 means no dilation).

our paper follow this method of producing a density map

via regression. This is particularly advantageous because a

sufficiently accurate regressor can also locate the objects in

the image via this method. However, the Lempitsky paper

ignores the issue of perspective scaling and other scaling

issues. The work of [27] introduces CNNs (convolutional

neural networks) for the purposes of crowd counting, but

performs regression on similarly scaled image patches.

These issues are addressed by the work of [18]. Rubio

et al. show that a fully convolutional neural network can be

used to produce a supervised regressor that produces den-

sity maps as in [15]. They further demonstrate a method

dubbed HydraCNN which essentially combines multiple

convolutional networks that take in differently scaled im-

age patches in order to incorporate multiscale, global in-

formation from the image. The premise of this method is

that a single regressor will fail to accurately represent the

difference in values of the features of an image caused by

perspective shifts (scaling effects) [18].

However, the architectures of both [18] and [27] are not

fully convolutional due to requiring multiple image patches

and, as discussed in [25], the experiments of [11, 17] and

[9, 12, 16] leave it unclear as to whether rescaling patches

of the image is truly necessary in order to solve dense pre-

diction problems via convolutional neural networks. More-

over, these approaches seem to saturate in performance at

three columns, which means the network is extracting in-

formation from fewer scales. The work of [25] proposes

the use of dilated convolutions as a simpler alternative that

does not require sampling of rescaled image patches to pro-

vide global, scale-aware information to the network. A fully

convolutional approach to multiscale counting has been pro-

posed by [28], in which a multicolumn convolutional net-

work gathers features of different scales by using convolu-

tions of increasing kernel sizes from column to column in-

stead of scaling image patches. Further, DeepLab has used

dilated convolutions in multiple columns to extract scale

information for segmentation [8]. We build on these ap-

proaches with our aggregator module as described in Sec-

tion 3.1, which should allow for extracting information from

more scales.

It should be noted that other methods of counting exist,

including training a network to recognize deep object fea-

tures via only providing the counts of the objects of interest

in an image [21] and using CNNs (convolutional neural net-

works) along with boosting in order to improve the results
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Figure 2. UCF sample results. Left: input counting image. Mid-

dle: Ground truth density map. Right: AMDCN prediction of

density map on test image. The network never saw these im-

ages during training. All density maps are one channel only (i.e.

grayscale), but are colored here for clarity.

of regression for production of density maps [24]. In the

same spirit, [4] combines deep and shallow convolutions

within the same network, providing accurate counting of

dense objects (e.g. the UCF50 crowd dataset).

In this paper, however, we aim to apply the dilated con-

volution method of [25], which has shown to be able to in-

corporate multiscale perspective information without using

multiple inputs or a complicated network architecture, as

well as the multicolumn approach of [8, 28] to aggregate

multiscale information for the counting problem.

3. Method

3.1. Dilated Convolutions for Multicolumn Net­
works

We propose the use of dilated convolutions as an at-

tractive alternative to the architecture of the HydraCNN

[18], which seems to saturate in performance at 3 or more

columns. We refer to our proposed network as the ag-

gregated multicolumn dilated convolution network1, hence-

forth shortened as the AMDCN. The architecture of the

AMDCN is inspired by the multicolumn counting network

of [28]. Extracting features from multiple scales is a good

idea when attempting to perform perspective-free counting

and increasing the convolution kernel size across columns

is an efficient method of doing so. However, the number

of parameters increases exponentially as larger kernels are

used in these columns to extract features at larger scales.

Therefore, we propose using dilated convolutions rather

than larger kernels.

Dilated convolutions, as discussed in [25], allow for the

exponential increase of the receptive field with a linear in-

crease in the number of parameters with respect to each hid-

den layer.

In a traditional 2D convolution, we define a real valued

function F : Z2 → R, an input Ωr = [−r, r]2 ∈ Z
2, and

a filter function k : Ωr → R. In this case, a convolution

1Implementation available on https://github.com/

diptodip/counting.

operation as defined in [25] is given by

(F ∗ k)(p) =
∑

s+t=p

F (s)k(t). (1)

A dilated convolution is essentially a generalization of

the traditional 2D convolution that allows the operation to

skip some inputs. This enables an increase in the size of

the filter (i.e. the size of the receptive field) without los-

ing resolution. Formally, we define from [25] the dilated

convolution as

(F ∗l k)(p) =
∑

s+lt=p

F (s)k(t) (2)

where l is the index of the current layer of the convolution.

Using dilations to construct the aggregator in combi-

nation with the multicolumn idea will allow for the con-

struction of a network with more than just 3 or 4 columns

as in [28] and [8], because the aggregator should prevent

the saturation of performance with increasing numbers of

columns. Therefore the network will be able to extract use-

ful features from more scales. We take advantage of dila-

tions within the columns as well to provide large receptive

fields with fewer parameters.

Looking at more scales should allow for more accurate

regression of the density map. However, because not all

scales will be relevant, we extend the network beyond a

simple 1 × 1 convolution after the merged columns. In-

stead, we construct a second part of the network, the aggre-

gator, which sets our method apart from [28], [8], and other

multicolumn networks. This aggregator is another series of

dilated convolutions that should appropriately consolidate

the multiscale information collected by the columns. This

is a capability of dilated convolutions observed by [25].

While papers such as [28] and [8] have shown that multiple

columns and dilated columns are useful in extracting multi-

scale information, we argue in this paper that the simple ag-

gregator module built using dilated convolutions is able to

effectively make use multiscale information from multiple

columns. We show compelling evidence for these claims in

Section 4.5.

The network as shown in Figure 1 contains 5 columns.

Note that dilations allow us to use more columns for count-

ing than [28] or [8]. Each column looks at a larger scale than

the previous (the exact dilations can also be seen in Figure

1). There are 32 feature maps for each convolution, and all

inputs are zero padded prior to each convolution in order

to maintain the same data shape from input to output. That

is, an image input to this network will result in a density

map of the same dimensions. All activations in the speci-

fied network are ReLUs. Our input pixel values are floating

point 32 bit values from 0 to 1. We center our inputs at 0 by

subtracting the per channel mean from each channel. When
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training, we use a scaled mean absolute error for our loss

function:

L =
1

n

n
∑

i=1

|ŷi − γyi| (3)

where γ is the scale factor, ŷi is the prediction, yi is the true

value, and n is the number of pixels. We use a scaled mean

absolute error because the target values are so small that it

is numerically unstable to regress to these values. At testing

time, when retrieving the output density map from the net-

work, we scale the pixel values by γ−1 to obtain the correct

value. This approach is more numerically stable and avoids

having the network learn to output only zeros by weight-

ing the nonzero values highly. For all our datasets, we set

γ = 255.

3.2. Experiments

We evaluated the performance of dilated convolutions

against various counting methods on a variety of common

counting datasets: UCF50 crowd data, TRANCOS traffic

data [18], UCSD crowd data [5], and WorldExpo crowd

data [27]. For each of these data sets, we used labels given

by the corresponding density map for each image. An ex-

ample of this is shown in Figure 2. We have performed

experiments on the four different splits of the UCSD data

as used in [18] and the split of the UCSD data as used

in [28] (which we call the original split). We also evaluated

the performance of our network on the TRANCOS traffic

dataset [14]. We have also experimented with higher den-

sity datasets for crowd counting, namely WorldExpo and

UCF.

We have observed that multicolumn dilations produce

density maps (and therefore counts) that often have lower

loss than those of HydraCNN [18] and [28]. We measure

density map regression loss via a scaled mean absolute error

loss during training. We compare accuracy of the counts via

mean absolute error for the crowd datasets and the GAME

metric in the TRANCOS dataset as explained in Section

3.2.2. Beyond the comparison to HydraCNN, we will also

compare to other recent convolutional counting methods,

especially those of [21], [24], and [4] where possible.

For all datasets, we generally use patched input images

and ground truth density maps produced by summing a

Gaussian of a fixed size (σ) for each object for training.

This size varies from dataset to dataset, but remains constant

within a dataset with the exception of cases in which a per-

spective map is used. This is explained per dataset. All ex-

periments were performed using Keras with the Adam opti-

mizer [10]. The learning rates used are detailed per dataset.

For testing, we also use patches that can either be directly

pieced together or overlapped and averaged except in the

case of UCF, for which we run our network on the full im-

age.

Furthermore, we performed a set of experiments in

which we varied the number of columns from 1 to 5 (sim-

ply by including or not including the columns as specified in

Figure 1, starting with the smallest filter column and adding

larger filter columns one by one). Essentially, the network

is allowed to extract information at larger and larger scales

in addition to the smaller scales as we include each column.

We then performed the same set of experiments, varying

the number of columns, but with the aggregator module re-

moved. We perform these experiments on the original split

of UCSD as specified in Section 3.2.3 and [5], the TRAN-

COS dataset, and the WorldExpo dataset because these are

relatively large and well defined datasets. We limit the num-

ber of epochs to 10 for all of these sets of experiments in or-

der to control for the effect of learning time, and also com-

pare all results using MAE for consistency. These experi-

ments are key to determining the efficacy of the aggregator

in effectively combining multiscale information and in pro-

viding evidence to support the use of multiple columns to

extract multiscale information from images. We report the

results of these ablation studies in Section 4.5.

3.2.1 UCF50 Crowd Counting

UCF is a particularly challenging crowd counting dataset.

There are only 50 images in the whole dataset and they are

all of varying sizes and from different scenes. The number

of people also varies between images from less than 100

to the thousands. The average image has on the order of

1000 people. The difficulty is due to the combination of the

very low number of images in the dataset and the fact that

the images are all of varying scenes, making high quality

generalization crucial. Furthermore, perspective effects are

particularly noticeable for many images in this dataset. De-

spite this, there is no perspective information available for

this dataset.

We take 1600 random patches of size 150 × 150 for the

training. For testing, we do not densely scan the image as

in [18] but instead test on the whole image. In order to

standardize the image sizes, we pad each image out with

zeros until all images are 1024 × 1024. We then suppress

output in the regions where we added padding when testing.

This provides a cleaner resulting density map for these large

crowds. The ground truth density maps are produced by

annotating each object with a Gaussian of σ = 15.

3.2.2 TRANCOS Traffic Counting

TRANCOS is a traffic counting dataset that comes with its

own metric [14]. This metric is known as GAME, which

stands for Grid Average Mean absolute Error. GAME

splits a given density map into 4L grids, or subarrays, and

obtains a mean absolute error within each grid separately.

The value of L is a parameter chosen by the user. These
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individual errors are summed to obtain the final error for a

particular image. The intuition behind this metric is that it

is desirable to penalize a density map whose overall count

might match the ground truth, but whose shape does not

match the ground truth [14]. More formally, we define

GAME(L) =
1

N
·

N
∑

n=1





4
L

∑

l=1

|eln − tln|



 (4)

where N refers to the number of images, L is the level pa-

rameter for GAME, eln is the predicted or estimated count

in region l of image n and tln is the ground truth count in

region l of image n [14].

For training this dataset, we take 1600 randomly sampled

patches of size 80 × 80. For testing this dataset, we take

80× 80 non-overlapping patches which we can stitch back

together into the full-sized 640 × 480 images. We trained

the AMDCN network with density maps produced with a

Gaussian of σ = 15 as specified in [18].

3.2.3 UCSD Crowd Counting

The UCSD crowd counting dataset consists of frames of

video of a sidewalk. There are relatively few people in view

at any given time (approximately 25 on average). Further-

more, because the dataset comes from a video, there are

many nearly identical images in the dataset. For this dataset,

there have been two different ways to split the data into train

and test sets. Therefore, we report results using both meth-

ods of splitting the data. The first method consists of four

different splits: maximal, downscale, upscale, and minimal.

Minimal is particularly challenging as the train set contains

only 10 images. Moreover, upscale appears to be the eas-

iest for the majority of methods [18]. The second method

of splitting this data is much more succinct, leaving 1200

images in the testing set and 800 images in the training

set [28]. This split comes from the original paper, so we

call it the original split [5].

For this dataset, each object is annotated with a 2D Gaus-

sian of covariance Σ = 8 · 12×2. The ground truth map is

produced by summing these. When we make use of the

perspective maps provided, we divide Σ by the perspective

map value at that pixel x, represented by M(x). The pro-

vided perspective map for UCSD contains both a horizontal

and vertical direction so we take the square root of the pro-

vided combined value. For training, we take 1600 random

79 × 119 pixel patches and for testing, we split each test

image up into quadrants (which have dimension 79× 119).

There are two different ways to split the dataset into train-

ing and testing sets. We have experimented on the split that

gave [18] the best results as well as the split used in [28].

First, we split the dataset into four separate groups of

training and testing sets as used in [18] and originally de-

fined by [20]. These groups are “upscale,” “maximal,”

“minimal,” and “downscale.” We see in Table 3 that the

“upscale” split and “downscale” split give us state of the

art results on counting for this dataset. For this experiment,

we sampled 1600 random patches of size 119 × 79 pixels

(width and height respectively) for the training set and split

the test set images into 119× 79 quadrants that could be re-

constructed by piecing them together without overlap. We

also added left-right flips of each image to our training data.

We then evaluate the original split. For this experiment,

we similarly sampled 1600 random patches of size 119×79
pixels (width and height respectively) for the training set

and split the test set images into 119 × 79 quadrants that

could be reconstructed by piecing them together without

overlap.

3.2.4 WorldExpo ’10 Crowd Counting

The WorldExpo dataset [27] contains a larger number of

people (approximately 50 on average, which is double that

of UCSD) and contains images from multiple locations.

Perspective effects are also much more noticeable in this

dataset as compared to UCSD. These qualities of the dataset

serve to increase the difficulty of counting. Like UCSD, the

WorldExpo dataset was constructed from frames of video

recordings of crowds. This means that, unlike UCF, this

dataset contains a relatively large number of training and

testing images. We experiment on this dataset with and

without perspective information.

Without perspective maps, we generate label density

maps for this dataset in the same manner as previously de-

scribed: a 2D Gaussian with σ = 15. We take 16000

150 × 150 randomly sampled patches for training. For

testing, we densely scan the image, producing 150 × 150
patches at a stride of 100.

When perspective maps are used, however, we follow the

procedure as described in [27], which involves estimating a

“crowd density distribution kernel” as the sum of two 2D

Gaussians: a symmetric Gaussian for the head and an el-

lipsoid Gaussian for the body. These are scaled by the per-

spective map M provided, where M(x) gives the number of

pixels that represents a meter at pixel x [27]. Note that the

meaning of this perspective map is distinct from the mean-

ing of the perspective map provided for the UCSD dataset.

Using this information, the density contribution from a per-

son with head pixel x is given by the following sum of nor-

malized Gaussians:

Dx =
1

||Z||
(Nh(x, σh) +Nb(xb,Σb)) (5)

where xb is the center of the body, which is 0.875 me-

ters down from the head on average, and can be deter-

mined from the perspective map M and the head center

x [27]. We sum these Gaussians for each person to pro-
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Method MAE

AMDCN 290.82

Hydra2s [18] 333.73

MCNN [28] 377.60

[27] 467.00

[23] 295.80

[3] 318.10

Table 1. Mean absolute error of various methods on UCF crowds

duce the final density map. We set σ = 0.2M(x) for Nh

and σx = 0.2M(x), σy = 0.5M(x) for Σb in Nb.

4. Results

4.1. UCF Crowd Counting

The UCF dataset is particularly challenging due to the

large number of people in the images, the variety of the

scenes, as well as the low number of training images. We

see in Figure 2 that because the UCF dataset has over 1000

people on average in each image, the shapes output by the

network in the density map are not as well defined or sepa-

rated as in the UCSD dataset.

We report a state of the art result on this dataset in Table

1, following the standard protocol of 5-fold cross validation.

Our MAE on the dataset is 290.82, which is approximately

5 lower than the previous state of the art, HydraCNN [18].

This is particularly indicative of the power of an aggregated

multicolumn dilation network. Despite not making use of

perspective information, the AMDCN is still able to pro-

duce highly accurate density maps for UCF.

4.2. TRANCOS Traffic Counting

Our network performs very well on the TRANCOS

dataset. Indeed, as confirmed by the GAME score,

AMDCN produces the most accurate count and shape com-

bined as compared to other methods. Table 2 shows that we

achieve state of the art results as measured by the GAME

metric [14] across all levels.

4.3. UCSD Crowd Counting

Results are shown in Table 3 and Figure 3. We see that

the “original” split as defined by the creators of the dataset

in [5] and used in [28] gives us somewhat worse results for

counting on this dataset. Results were consistent over mul-

tiple trainings. Again, including the perspective map does

not seem to increase performance on this dataset. Despite

this, we see in Table 3 and Figure 3 that the results are com-

parable to the state of the art. In fact, for two of the splits,

our proposed network beats the state of the art. For the up-

scale split, the AMDCN is the state of the art by a large

relative margin. This is compelling because it shows that

accurate perspective-free counting can be achieved without

Method GAME

(L=0)

GAME

(L=1)

GAME

(L=2)

GAME

(L=3)

AMDCN 9.77 13.16 15.00 15.87

[18] 10.99 13.75 16.69 19.32

[15] + SIFT

from [14]

13.76 16.72 20.72 24.36

[13] + RGB

Norm + Filters

from [14]

17.68 19.97 23.54 25.84

HOG-2

from [14]

13.29 18.05 23.65 28.41

Table 2. Mean absolute error of various methods on TRANCOS

traffic

creating image pyramids or requiring perspective maps as

labels using the techniques presented by the AMDCN.

4.4. WorldExpo ’10 Crowd Counting

Our network performs reasonably well on the more chal-

lenging WorldExpo dataset. While it does not beat the state

of the art, our results are comparable. What is more, we do

not need to use the perspective maps to obtain these results.

As seen in Table 4, the AMDCN is capable of incorporating

the perspective effects without scaling the Gaussians with

perspective information. This shows that it is possible to

achieve counting results that approach the state of the art

with much simpler labels for the counting training data.

4.5. Ablation Studies

We report the results of the ablation studies in Figure

4. We note from these plots that while there is variation in

performance, a few trends stand out. Most importantly, the

lowest errors are consistently with a combination of a larger

number of columns and including the aggregator module.

Notably for the TRANCOS dataset, including the aggrega-

tor consistently improves performance. Generally, the ag-

gregator tends to decrease the variance in performance of

the network. Some of the variance that we see in the plots

can be explained by: (1) for lower numbers of columns, in-

cluding an aggregator is not as likely to help as there is not

much separation of multiscale information across columns

and (2) for the UCSD dataset, there is less of a perspec-

tive effect than TRANCOS and WorldExpo so a simpler

network is more likely to perform comparably to a larger

network. These results verify the notion that using more

columns increases accuracy, and also support our justifica-

tion for the use of the aggregator module.
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(a) UCSD upscale split. (b) UCSD original split.

Figure 3. UCSD crowd counting dataset. Both plots show comparisons of predicted and ground truth counts over time. While AMDCN

does not beat the state of the art on the original split, the predictions still follow the true counts reasonably. The jump in the original split

is due to that testing set including multiple scenes of highly varying counts.

Method maximal downscale upscale minimal original

AMDCN (without perspective information) 1.63 1.43 0.63 1.71 1.74

AMDCN (with perspective information) 1.60 1.24 1.37 1.59 1.72

[18] (with perspective information) 1.65 1.79 1.11 1.50 -

[18] (without perspective information) 2.22 1.93 1.37 2.38 -

[15] 1.70 1.28 1.59 2.02 -

[13] 1.70 2.16 1.61 2.20 -

[19] 1.43 1.30 1.59 1.62 -

[2] 1.24 1.31 1.69 1.49 -

[27] 1.70 1.26 1.59 1.52 1.60

[28] - - - - 1.07

[1, 28] - - - - 2.16

[7] - - - - 2.25

[5] - - - - 2.24

[6] - - - - 2.07

Table 3. Mean absolute error of various methods on UCSD crowds

5. Conclusion

5.1. Summary

We have proposed the use of aggregated multicolumn di-

lated convolutions, the AMDCN, as an alternative to the

HydraCNN [18] or multicolumn CNN [28] for the vision

task of counting objects in images. Inspired by the multi-

column approach to multiscale problems, we also employ

dilations to increase the receptive field of our columns. We

then aggregate this multiscale information using another se-

ries of dilated convolutions to enable a wide network and

detect features at more scales. This method takes advantage

of the ability of dilated convolutions to provide exponen-

tially increasing receptive fields. We have performed ex-

periments on the challenging UCF crowd counting dataset,

the TRANCOS traffic dataset, multiple splits of the UCSD

crowd counting dataset, and the WorldExpo crowd counting

dataset.
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(a) WorldExpo (b) TRANCOS (c) UCSD original split

Figure 4. Ablation studies on various datasets in which the number of columns is varied and the aggregator is included or not included.

The results generally support the use of more columns and an aggregator module.

Method MAE

AMDCN (without perspective infor-

mation)

16.6

AMDCN (with perspective informa-

tion)

14.9

LBP+RR [28] (with perspective infor-

mation)

31.0

MCNN [28] (with perspective informa-

tion)

11.6

[27] (with perspective information) 12.9

Table 4. Mean absolute error of various methods on WorldExpo

crowds

We obtain superior or comparable results in most of

these datasets. The AMDCN is capable of outperforming

these approaches completely especially when perspective

information is not provided, as in UCF and TRANCOS.

These results show that the AMDCN performs surprisingly

well and is also robust to scale effects. Further, our ablation

study of removing the aggregator network shows that using

more columns and an aggregator provides the best accuracy

for counting — especially so when there is no perspective

information.

5.2. Future Work

In addition to an analysis of performance on counting,

a density regressor can also be used to locate objects in the

image. As mentioned previously, if the regressor is accurate

and precise enough, the resulting density map can be used

to locate the objects in the image. We expect that in order to

do this, one must regress each object to a single point rather

than a region specified by a Gaussian. Perhaps this might be

accomplished by applying non-maxima suppression to the

final layer activations.

Indeed, the method of applying dilated filters to a multi-

column convolutional network in order to enable extracting

features of a large number of scales can be applied to var-

ious other dense prediction tasks, such as object segmenta-

tion at multiple scales or single image depth map prediction.

Though we have only conducted experiments on counting

and used 5 columns, the architecture presented can be ex-

tended and adapted to a variety of tasks that require infor-

mation at multiple scales.
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