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Abstract

Some of the main challenges in skeleton-based action

recognition systems are redundant and noisy pose transfor-

mations. Earlier works in skeleton-based action recogni-

tion explored different approaches for filtering linear noise

transformations, but neglect to address potential nonlinear

transformations. In this paper, we present an unsupervised

learning approach for estimating nonlinear noise transfor-

mations in pose estimates. Our approach starts by decou-

pling linear and nonlinear noise transformations. While the

linear transformations are modelled explicitly the nonlin-

ear transformations are learned from data. Subsequently,

we use an autoencoder with L2-norm reconstruction error

and show that it indeed does capture nonlinear noise trans-

formations, and recover a denoised pose estimate which in

turn improves performance significantly. We validate our

approach on a publicly available dataset, NW-UCLA.

1. Introduction

Over the last few years, a significant progress has been

made in computer vision applications using human pose es-

timates as an input data. Applications range from action

recognition [27, 11, 16] to guidance systems for home reha-

bilitation [2, 6, 4]. Such approaches simplify the problem

by restricting their observation to a stick figure of the sub-

ject performing the action, usually referred to as the skele-

ton. They are purely skeleton-based methods [5] when it

is the main source of information or hybrid if skeletons

are merged with other features [19]. When using skeletons

only, the dynamics of a particular action is estimated from

a compressed data, estimated poses. The compression re-

duces the dimensionality of the problem, in effect its com-

plexity. Regardless, however, estimated poses are generally

not invariant to differences in intrinsic and extrinsic cam-

era parameters. Moreover, pose estimation methods tend

to exhibit high nonlinearity in certain regions of the prob-

lem domain, e.g., a slight difference in actual poses might
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Figure 1: Illustration of the proposed approach: (a)

shows estimated input pose in frontal view, (b) shows an

approximate denoised reconstruction of the input in (a).

lead to a large difference in the final pose estimates. Over-

all, such kind of task-irrelevant transformations corrupt the

input data and obscure the underlying dynamics which, in

most cases, account for overfitting models.

In this paper, we introduce an unsupervised learning ap-

proach to filter coordinate and nonlinear variations from

estimated poses. Consequently, we treat observed action

sequences as transformed versions of a noise-free underly-

ing dynamics. As such, the goal is to correctly estimate

a task-irrelevant transformation, and attempt to recover a

standardized and noise-free pose estimate from a noisy and

redundant input, see Figure 1. To that end, we propose to

use autoencoders for denoising pose estimates. The pro-

posed approach starts by assuming an explicit model of

pose variation due to scale, location, and rotation. Subse-

quently, the model is used to normalize rigid transforma-

tion of estimated poses. In effect, coordinate variations of

an estimated pose are isolated from variations that are due

to unknown nonlinear transformations, e.g., nonlinearity of

pose estimating algorithms and measurement fluctuations.

Next, an autoencoder is used to explicitly filter and correct
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noisy pose estimates that are caused mainly due to nonlin-

earity. We evaluate our approach on a publicly available

dataset. Results show that denoising pose estimates does

indeed have a significant effect in improving performance.

The paper is organized as follows: in Section 2 a brief

overview of related works is provided. In Section 3, we

describe the general framework of the proposed approach.

Section 4 describes experimental setups, the dataset, and

results of our approach. The paper concludes with summa-

rizing remarks in Section 5.

2. Related works

Several of the earlier skeleton-based approaches are tai-

lored to address data variation due to known task-irrelevant

transformations. In [27, 11, 16, 9, 25, 5], data variation

due to scale, location and rotation, are addressed by nor-

malizing the data with respect to a given standard. Mean-

while, variations in an action dynamics are modelled with

probabilistic [30, 29] or deterministic [32, 16, 17] tempo-

ral models. Concurrently, several approaches improve on

accuracy and robustness by further reducing pose estimates

to body parts [27, 11, 32, 1] and focusing on a particular

body part that is correlated with a given action. Neverthe-

less, in most of the above approaches, the addressed data

variations are modelled explicitly, e.g., data variations due

to different camera parameter are generally modelled as lin-

ear transformations. However, there is no explicit model to

address highly nonlinear variations in pose estimates. In

that respect, a general purpose data compression approach

would ideally be able to capture such variations.

Some of the earliest works in general purpose data com-

pression are proposed in the context of signal reconstruc-

tion. In [8, 10], it was shown that under a mild assumption

on a known and underdetermined linear system, selecting a

solution that minimizes the L1 norm is equivalent to select-

ing the sparsest solution. Thereby, eliminating redundancy.

Subsequently, sparsity and other smoothness based data

representations are generalized to problems where the trans-

formation function is neither linear nor known [24, 20, 26].

In a similar spirit, several works are proposed in sequen-

tial data representation learning. In [23, 15, 3], an encoder

that maps a sequence to a fixed size high-dimensional vec-

tor is presented with an application in machine translation.

In [22] an encoding of a video is presented with an action

recognition application from videos. Nevertheless, our ap-

proach draws its main motivation from sparsity-based com-

pression methods that assume fixed data size as opposed to

a sequence.

3. Model description

Let x ∈ R
n be the joint positions of an actual pose in a

given world coordinate system, and let x̃ be an estimate of

the pose from an image or depth map defined as

f(x) = x̃, (1)

where f(·) is an unknown transformation function. Given

the above formulation, our main goal is to solve for the orig-

inal pose x without an explicit knowledge or model of the

transformation function f(·). Consequently, in this section,

we first describe the underlying framework (autoencoders)

of our model and proceed to the description of the proposed

approach.

3.1. Autoencoders

An autoencoder is a deep learning based framework

that is closely related to Independent Component Analysis

(ICA) [7]. Given a set of data points x̃n
i=1

an autoencoder

solves for what is known as a reconstruction error which,

using the L2 norm, is written as follows

argmin
Θg,Θh

n
∑

i=1

‖x̃i − g(h(x̃i))‖2. (2)

The functions g (decoder) and h (encoder) are mostly mod-

elled as feedforward networks, hence are parameterized

with connection weights and biases which we denoted al-

together with Θg,Θh. In general, the main goal of (2) is to

identify the underlying transformation of the dataset, for-

malized as g ◦ h. However, in most cases, (2) does not

have a unique solution, e.g., a trivial solution would be an

identity that will lead to zero reconstruction error. As a re-

sult, apart from identifying a suitable reconstruction error

function, it is important to regularize the cost with general

and domain-specific priors so that non-trivial transforma-

tions can be learned.

In the next subsection, we describe details of an

autoencoder-based learning architecture that is conditioned

to correct and compress noisy pose estimates.

3.2. Proposed approach

The main two goals of our approach are to achieve ro-

bustness to noise transformations and remove redundancy

in pose estimates. Subsequently, we address coordinate

normalization and its generalization, pose denoising, as

follows.

Nonlinear pose variation: Variation in pose estimate due

to scale, location and rotation are mostly modelled as lin-

ear transformations by considering the vectorized form of a

pose estimate as a rigid-object. Consequently, given a pose

estimate with n joints, x̃ = (J1, · · · , Jn), location is filtered

by fixing a given reference point pc as

x̃ = (J1 − pc, · · · , Jn − pc). (3)
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In [25, 16], pc is computed as the mean vector of the hip

joints. Similarly, we compute pc as the mean vector of the

two hip joints and the torso joint. Meanwhile, scale is nor-

malized by standardizing the vectorized form of the pose

estimate x̃ to unit norm. Finally, rotational variation is ap-

proximated by estimating the camera pose with respect to a

fixed world coordinate system. To that end, let Jhl be the

left hip joint position of a centered pose estimate. An or-

thogonal vector to Jhl, in the direction of the torso joint Jt,

is then estimated as

J⊥

hl = Jt −
( (Jhl)

T

‖Jhl‖2
Jt

)

Jhl, (4)

where J⊥

hl denotes a vector that is orthogonal to Jhl. The

third and final orthogonal vector is then estimated as

(Jhl, J
⊥

hl)
⊥ = Jhl ⊗ J⊥

hl, (5)

where ⊗ denotes cross product. The orthonormal version of

the above three vectors, M = (Jhl, J⊥

hl, (Jhl, J
⊥

hl)
⊥),

constitute the camera position estimate with respect to a

fixed world coordinate frame. Finally, a given pose estimate

is standardized to a fixed coordinate orientation as follows

x̃ = M
T × x̃, (6)

where (·)T denotes matrix transpose. Henceforth, we de-

note a pose estimate coordinate transformation function as

κ, and the standardization of scale, location and coordinate

orientation as κ−1. Subsequently, we rewrite (1) as

f(x) = κ ◦ f̃(x) = x̃, (7)

and use κ−1 to filter coordinate transformations. As such,

the problem is now to solve for the data source x with an

estimate of f̃ by optimizing

argmin
f̃ ,x

‖k−1(x̃)− f̃(x)‖2. (8)

Subsequently, we use autoencoders to solve for f̃ by ap-

proximating it with the decoder, and the data source x by

the latent variable h(κ−1(x̃)), written as

argmin

n
∑

i=1

‖k−1(x̃)− g ◦ h(k−1(x̃))‖2. (9)

Consequently, the encoder h, defined in (2), models f̃−1

which represents the nonlinear transformation of a noisy

pose estimate to noise-free data. While, the decoder g

represents a denoised yet uncompressed approximation as

shown in Figure 1.

Autoencoders for pose denosing: The proposed learning

architecture for solving (9) is composed of an encoder and

decoder feedforward networks where the encoder is defined

as

h = relu(We
l x̃l + bel ), (10)

and the decoder as

g = tanh(Wd
l h(x̃l) + bdl ), (11)

l is used to identify the layers. We have chosen to use recti-

fied linear units (Relu) to strictly enforce sparsity through

hard-nonlinearity, instead of imposing an L1 norm con-

straint on the encoder. However, unlike other common non-

linearities Relu is unbounded (does not saturate) opening

possibilities for learning biased representations, see [13] for

details. Consequently, similar to [21] we reparametrize the

connecting weights as

W
i
l = sl

W
i
l

‖Wi
l‖2

, (12)

where i denotes connections per hidden unit (a row in the

weight matrices), sl is scalar. In this work, however, sl is

estimated per layer not per hidden unit.

In order to further ensure non-trivial transformation

learning, we reduce the dimensionality of the latent vari-

able h. In such a case, the network has to learn to compress

the input data into a much smaller dimensional latent vari-

able h in such a way that it can reconstruct the original pose

from it.

3.3. Robust action recognition

The dynamics of an action recognition system is mod-

elled using LSTM (Long short-term memory) [14]. To-

gether with a nonlinear pose transformation model, de-

scribed in Section 3.2, LSTM completes the general archi-

tecture of the proposed robust action recognition system.

The most common architecture in representation learn-

ing is to use an unsupervised learning to initialize parame-

ters of a supervised learning [12]. Here, however, we sim-

ply denoise poses and treat them as inputs for the supervised

learning. Hence, there is neither supervision in learning to

denoise the poses nor the learned transformation function

is adjusted by class-specific error later on. Subsequently,

given a denoised version of the poses, the outputs of the

LSTM cells are projected to the class labels using a single

layer feedforward network.

4. Experimental results

In this section, we describe the dataset we have used

for the experimental analysis, Northwestern-UCLA (NW-

UCLA) dataset [28], the experimental setups, and analysis

of the results.
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(a) M1 = (30,1) (b) M2 = (30,4) (c) M3 = (60,4)

Figure 2: Training vs testing accuracy: The figure shows training (in green) vs testing (in red) accuracy against optimization

iterations. The impact of pose normalization κ−1 and pose denoising f̃−1 are shown in two separate rows. The first row is

the result of models when the data is filtered using κ−1 and the second row when the data is filtered using f̃−1. Each column

shows results of their respective model. Note that, the training accuracy trails the test accuracy closely in case of f̃−1 as

opposed to κ−1 as the model size increases.

Northwestern-UCLA dataset: The dataset contains 10

types of action sequences taken from three different point

of views. Ten different subjects performed each action

up to 10 times, creating variability in the dynamics of an

action. Furthermore, the dataset is collected simultaneously

using three cameras installed at different positions and

orientations. Hence, the variable between the data collected

by two different cameras is principally due to redundant

noise transformations. As a result, it is particularly suited

to evaluate the proposed approach.

Experimental setups: We follow a similar experimental

setup as described in [31]– we use the data from the first

two cameras for training, and use the data from the third

for testing. However, in order to show the impact of the

proposed approach as a preemptive action against overfit-

ting, we evaluate our approach using temporal models with

different capacities. To get a baseline performance, we use

pose normalization, κ−1.

Subsequently, we use filtered pose estimates to train and

test three different LSTM models. Each model is different

from another only by the number of hidden units and layers.

To that end, denoting the number of hidden layers by L,

number of hidden units by H and a model by (H,L), we

have used an LSTM model M1 = (30, 1), and M2 = (30,4),

and finally M3 = (60, 4). A mini-batch size of 20 is kept for

all models with the same learning rate (0.001) and epoch

number (140). Each model is trained and tested on a pose

estimate filtered by the following approaches

1. κ−1: Here, we simply standardize the poses, without

accounting for the nonlinear variations, and achieve a

baseline performance.

2. f̃−1: Here, we use an autoencoder of three hidden lay-

ers with the number of hidden units corresponding to

(40,30,20); the decoder is composed of (20,30,40) hid-

den layers. Hence, the final pose representation is a

20-dimensional sparse vector.

4.1. Results

The goal of the described experimental setup is to mainly

evaluate the impact of the proposed approach in two scenar-

ios: 1) where overfitting is less likely, and 2) where over-

fitting is more likely. In that regard, the network model

M1 = (30,1) is representative of a model with a much

smaller number of parameters thus likely to not overfit a

dataset. On the contrary, the models M2 = (30, 4) and

M3= (60,4) represent models that are more likely to overfit

a dataset in comparison to M1.

Consequently, in using M1 for modelling the dynamics

of an action, the testing accuracy trails the training accu-
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Methods Accuracy (%)

HBRNN-L [11] 78.52

Lie group [25] 74.20

Actionlet ensemble [27] 76.00

Ensemble TS-LSTM [16] 89.22

Enhanced skeleton visualization [18] 86.09

Our appraoch

Denoised-LSTM M1 = (30,1) 76.81

Denoised-LSTM M2 = (30,4) 80.25

Denoised-LSTM M3 = (60,4) 79.57

Table 1: Performance comparison: The table shows re-

sults of recent and earlier works on Northwestern-UCLA

dataset. Mainly due to the proposed approach, the base

LSTM-model performed comparably to most of the special-

ized models.

Models Filters accuracy (%)

κ−1 f̃−1

M1 71.84 76.81

M2 71.36 80.25

M2 72.94 79.57

Table 2: Experimental result: The table summarizes the

performance of different models while trained and tested

using different input data filters.

racy closely regardless of which data filter is used, κ−1 or

f̃−1. However, as the model capacity is increased from M1

to M2 and to M3, the testing accuracy starts to diverge from

the training accuracy depending on the filter. As such, it

characterizes an overfitting model. However, as shown in

Figure 2, using the proposed nonlinear filter f̃−1, the dif-

ference between testing accuracy and training accuracy is

stabilized as the models capacity is increased. This fact is

shown much more clearly in Figure 3 and Table 2, through

improved accuracy and stable training/testing performance

difference. As a result, the experimental results indicate that

using the proposed approach f̃−1 on top of pose standard-

ization κ−1 does indeed add robustness and improves per-

formance.

Although the proposed approach is not designed to ad-

dress variability in action dynamics, the performance boost

due to the pose encoding resulted in a comparable perfor-

mance while using low capacity models as compared to

works presented in [11, 16], see Table 1. Finally, we show

a qualitative result of accurately denoised poses and failure

cases in Figure 4.

5. Conclusion

In this paper, we have introduced an approach for filter-

ing nonlinear variations in pose estimates. Our approach

Figure 3: Performance vs model capacity: The figure

shows the difference between testing accuracy (in red) and

training accuracy (in green) for different model sizes. Note

that, the difference increases much faster in case of κ−1 as

compared to f̃−1.

began by decoupling pose estimate variation due to coordi-

nate transformation from nonlinear pose variation. Subse-

quently, the later is modelled using an encoder in encoder-

decoder (autoencoder) framework. We have shown that the

proposed model does indeed capture redundancy in pose

representation and remove noise. Consequently, helps to

avoid dataset overfitting when large capacity models are

used, thereby improving performance. Nevertheless, ex-

ploring alternative architectures can potentially improve ro-

bustness and improve performance, e.g., overcomplete au-

toencoders. Furthermore, the proposed approach can be

integrated with any high capacity model, e.g., Ensemble

LSTM [16], to improve performance and mitigate a poten-

tial overfitting. The integration can be purely unsupervised,

as presented here, or semi-supervised, where the learned

representation is used to initialize a supervised network’s

parameters.
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