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Abstract

Multi-person pose estimation in images and videos is

an important yet challenging task with many applications.

Despite the large improvements in human pose estimation

enabled by the development of convolutional neural net-

works, there still exist a lot of difficult cases where even

the state-of-the-art models fail to correctly localize all body

joints. This motivates the need for an additional refinement

step that addresses these challenging cases and can be eas-

ily applied on top of any existing method. In this work, we

introduce a pose refinement network (PoseRefiner) which

takes as input both the image and a given pose estimate and

learns to directly predict a refined pose by jointly reason-

ing about the input-output space. In order for the network

to learn to refine incorrect body joint predictions, we em-

ploy a novel data augmentation scheme for training, where

we model “hard“ human pose cases. We evaluate our ap-

proach on four popular large-scale pose estimation bench-

marks such as MPII Single- and Multi-Person Pose Es-

timation, PoseTrack Pose Estimation, and PoseTrack Pose

Tracking, and report systematic improvement over the state

of the art.

1. Introduction

The task of human pose estimation is to correctly loc-

alize and estimate body poses of all people in the scene.

Human poses provide strong cues and have shown to be an

effective representation for a variety of tasks such as activ-

ity recognition, motion capture, content retrieval and social

signal processing. Recently, human pose estimation per-

formance has improved significantly due to the use of deep

convolutional neural networks [36, 24, 46, 33, 18] and avail-

ability of large-scale datasets [31, 2, 3, 29].

Although great progress has been made, the problem

remains far from being solved. There still exist a lot of

challenging cases, such as person-person occlusions, close

proximity of similar looking people, rare body configura-
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Figure 1: Example of the proposed pose refinement. Start-

ing from an image and an estimated body pose (central),

our refinement method PoseRefiner outputs a denoised

body pose (right). The system learns to fuse the appearance

of the person and an estimation of its pose structure in order

to better localize each body joint. It is trained to specific-

ally target common errors of human pose estimation meth-

ods, e.g. merges of body joints of different people in close

proximity and confusion between right/left joints.

tions, partial visibility of people and cluttered backgrounds.

Despite the great representational power, current deep

learning-based approaches are not explicitly trained to ad-

dress such hard cases and often output incorrect body pose

predictions such as spurious body configurations, merges of

body joints of different people, confusion between similarly

looking left and right limbs, or missing joints.

In this work, we propose a novel human pose refine-

ment approach that is explicitly trained to address such hard

cases. Our simple yet effective pose refinement method can

be applied on top of any body pose prediction computed by

an arbitrary human pose estimation approach, and thus is

complementary to current approaches [46, 33, 6, 23]. As

we demonstrate empirically, the proposed pose refinement

allows to push the state of the art on several standard bench-

marks of single- and multi-person pose estimation [3, 2],

as well as articulated pose tracking [2]. In more detail,
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given an RGB image and a body pose estimate, we aim

to output a refined human pose by exploiting the depend-

encies between the image and the inherent structure of the

provided body pose (see Figure 1). This makes it easier for

the network to identify what is wrong with input prediction

and find a way to refine it. We employ a fully convolutional

ResNet-based architecture and propose an elaborate data

augmentation scheme for training. To model challenging

cases, we propose a novel data augmentation procedure that

allows to synthesize possible input poses and make the net-

work learn to identify the erroneous body joint predictions

and to refine them. We refer to the proposed approach as

PoseRefiner.

We evaluate our approach on four human pose estim-

ation benchmarks, namely MPII Single Person [3], MPII

Multi-Person [3], PoseTrack Multi-Person Pose Estimation

[2], and PoseTrack Multi-Person Pose Tracking [2]. We re-

port consistent improvement after applying the proposed re-

finement network to pose predictions given by various state-

of-the-art approaches [48, 14, 23, 26, 17, 46, 33, 44, 6, 7]

across different datasets and tasks, showing the effective-

ness and generality of the proposed framework. With our

refinement network, we improve the best reported results

for multi-person pose estimation and pose tracking on MPII

Human Pose and PoseTrack datasets.

In summary, our contributions are as follows:

• We introduce an effective post-processing technique

for body joint refinement in human pose estimation

tasks, that works on top of any existing human body

pose estimation approach. Our proposed pose refine-

ment network is efficient due to its feed-forward archi-

tecture, simple and end-to-end trainable.

• We propose a training data augmentation scheme for

error correction, which enables the network to identify

the erroneous body joint predictions and to learn a way

to refine them.

• We show that our refinement model allows to system-

atically improve over various state-of-the-art methods

and achieve top performing results on four different

benchmarks.

The rest of the paper is organized as follows. Section 2

provides an overview of the related work and positions the

proposed approach with respect to earlier work. Section 3

describes the proposed pose refinement network and data

augmentation for error correction of human body pose es-

timation. Experimental results are presented in Section 4.

Section 5 concludes the paper.

2. Related Work

Our proposed approach is related to previous work on

single- and multi-person pose estimation, articulated track-

ing as well as refinement/error correction methods, as de-

scribed next.

Single-person pose estimation. Classical methods [15, 47,

4, 40, 10, 38] formulate single person pose estimation as

a pictorial structure or graphical model problem and pre-

dict body joint locations using only hand-designed features.

More recent methods [43, 42, 45, 34, 30, 46] rely on loc-

alizing body joints by employing convolutional neural net-

works (CNNs), which contributed to large improvement in

human pose estimation. [43] directly predicts joint coordin-

ates via a cascade of CNN pose regressors, while further

improvement in the performance is achieved by predicting

heatmaps of each body joint [42, 30] and using very deep

CNNs with multi-stage architectures [45]. Our method is

complementary to current approaches, as it is able to use

their predictions as input and further improve their results,

see Section 4.2 for details.

Multi-person pose estimation. Compared to single per-

son pose estimation, multi-person pose estimation requires

parsing of the full body poses of all people in the scene and

is a much more challenging task due to occlusions, vari-

ous articulations and interactions between people. Multi-

person pose estimation methods can be grouped into two

types: top-down and bottom-up approaches.

Top-down approaches [36, 21, 19, 12, 25, 16] employ a

person detector and then perform single-person pose estim-

ation for each detected person. These methods highly de-

pend on the reliability of the person detector and are known

to have trouble recovering poses of people in close proxim-

ity to each other and/or with overlapping body parts. Thus,

the output predictions of top-down methods might benefit

from an additional refinement step proposed in this work.

Bottom-up methods [6, 39, 24, 33, 27] first predict all

body joints and then group them into full poses of different

people. Instead of applying person detection, these methods

rely on context information and inter body joint relation-

ships. However, modeling the joint relationships might not

be as reliable, causing mistakes like failure to disambiguate

poses of different people or grouping body parts of the same

person into different clusters. Our refinement approach can

particularly help in this scenario, as it re-estimates joint loc-

ations by taking the structure of the body pose into account.

Articulated pose tracking. Most articulated pose track-

ing methods rely on a two-stage framework, which first

employs a per-frame pose estimator and then smooths the

predictions over time. [41] proposes a model combining a

CNN and a CRF to jointly optimize per-frame predictions

with the CRF, smoothing the predictions over space and

time. [25, 23, 26] employ a bottom-up strategy, they first

detect body joints of all people in all frames of the video

and then an integer program optimization is solved group-

ing joints into people over time. [14] applies 3D Mask R-

CNN [19] over short video clips, producing a tubelet with
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Figure 2: The overview of our PoseRefiner system. We take as input an image I and an initial estimate of a person body

pose Pinput. The input pose is encoded as n binary channels, where n is the number of joints, which are stacked together

with the image RGB channels and used as an input to a fully convolutional network. The network learns to predict likelihood

heatmaps for each joint type, as well as offset vectors to recover from the downscaled spatial resolution. The output pose

Poutput is a refined estimate of the initial input.

body joints per person, and then performs a lightweight op-

timization to link the predictions over time. [26] extends

the work of [6] by rethinking the network architecture and

developing a redundant part affinity fields (PAFs) mechan-

ism, while [37] employs a geometric tracker to match the

predicted poses frame-by-frame. All of these approaches

heavily rely on accurate pose estimation in a single frame.

We show in Section 4.4 that by refining the initial pose hy-

pothesis in individual frames we are able to significantly

improve pose tracking over time.

Refinement/error correction. Another group of work [7,

17, 5, 32, 28] aims to refine labels from the initial estim-

ate by jointly reasoning about input-output space. [7] pro-

poses to iteratively estimate residual corrections which are

added to the initial prediction. In a similar spirit [17, 5] use

RNN-like architectures to sequentially refine the results and

[35, 9, 28] employ cascade CNNs with refinement stages.

[13] decomposes the label improvement into three stages:

first detecting the errors in the initial labels, replacing the

incorrect labels with new ones and refining the labels by

predicting residual corrections. Likewise [22] employs a

parallel architecture that propagates correct labels to nearby

pixels and replaces the erroneous predictions with refined

ones, then fuses the intermediate results to obtain a final

prediction. In contrast to these methods, our proposed re-

finement network is much simpler as it learns to directly

predict the refined labels from the initial estimate using a

simple feed-forward fully convolutional network.

3. Method

In this section, we describe our approach -

PoseRefiner - in detail. We propose a pose re-

finement network which takes as input both an RGB image

and a body pose estimate and aims to refine the initial

prediction by jointly reasoning about the input and output

space (see Figure 2). Exploiting the dependencies between

the image and the predicted body pose makes it easier

for the model to identify the errors in the initial estimate

and how to refine them. For the network to be able to

learn to correct the erroneous body joint predictions we

employ a training data augmentation scheme, modeled to

generate the most common failure cases of human pose

estimators. This yields a model that is able to refine a

human pose estimate derived from different pose estimation

approaches and allows to achieve state-of-the-art results

on the challenging MPII Human Pose and PoseTrack

benchmarks.

Approach. We approach the refinement of pose estimation

as a system on its own, which can be easily used as a post-

processing step following any keypoint prediction task. Al-

though there can be multiple estimated people poses in an

image, we apply the refinement process on a per-person

level. Given an estimated person pose, we initially rescale

and crop around it to obtain a reference input. We then for-

ward this obtained image I and pose estimate Pinput as an

input to a fully convolutional neural network f , modeled to

compute a refined pose prediction Poutput.

Formally, we refine an initial pose estimate Pinput as:

Poutput = f(I, Pinput), where:

• f is the PoseRefiner, the function to be learned.

Since the output of this function is a single person

pose, we model it using a fully convolutional network

designed for single-person pose estimation.

• I is the original image in RGB format.

• Pinput is the initial body pose, which needs to be re-

fined. It is concatenated with the RGB image as n

additional channels, where n is the number of body

joints.
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Poutput Pinput = T1(Poutput) Pinput = T2(Poutput) Pinput = T3(Poutput) Pinput = T4(Poutput)

Figure 3: Examples of the proposed data synthesis for training. Starting from the ground truth Poutput, we synthesize

the initial pose estimate Pinput to mimic the most common errors of pose estimators. For visualization purposes, we only

illustrate one transformation at a time: T1 shifts the left shoulder (yellow), T2 switches the left ankle (pink) with the right

ankle (red), T3 replaces the right shoulder (fuchsia) by the left shoulder of the neighboring person and T4 removes the right

knee.

• Poutput is the refined pose, in the form of n channels.

Both Pinput and Poutput are encoded using one binary

channel for each body joint.

Architecture. We adopt the design choices that were

shown successful in architectures with strong body joint de-

tectors. As network architecture, we employ the ResNet-

101 [20] backbone converted to a fully convolutional mode

with stride of 8 px. Although the ResNet-101 network is

designed to accept as input only 3 (RGB) channels, it can

be easily extended to accept additional body joint channels

by increasing the depth of the filters of the first convolu-

tional layer (from 3 to 3 + n), where n is the number of

body joints.

Following [39, 24], we train the network to predict two

types of output: likelihood heatmaps of each body joint

and offsets from the locations on the heatmap grid to the

ground truth joint locations. Likelihood heatmaps for each

joint type are trained using sigmoid activations and cross

entropy loss function. The shape of the output heatmaps is

8 times smaller in each spatial dimension than the shape of

the input, due to the 8 pixel stride of the network. Hence

to recover from the lost resolution, we learn to predict off-

set vectors from every heatmap location to the ground truth

joint coordinate by regressing displacements (∆x,∆y) us-

ing mean squared error.

At test time, every pixel location in each likelihood

heatmap indicates the probability of presence of the par-

ticular joint at that coordinate. The pixel with the highest

confidence in each likelihood heatmap is selected as the

rough downscaled joint coordinate. The final coordinate

is obtained by adding the offset vector (∆x,∆y) to the

upscaled joint location predicted at the lower resolution.

Training Data Synthesis. To train the network f , we need

to have access to ground truth triplets (I, Pinput, Poutput).
While (I, Poutput) pairs are already available in large scale

pose estimation datasets, we propose to synthesize Pinput

to mimic the most common failure cases of human pose es-

timators. The goal is for the model to be able to refine initial

estimates and become robust to the "hard" body pose cases.

In essence, Pinput is a noisy version of Poutput, which we

synthesize from the ground truth by applying the following

transformations (visualized in Figure 3):

(T1) Shift the coordinates of each joint by a displacement

vector. The angle of the displacement vector is sampled

uniformly from [0, 2π]. The length of the displacement vec-

tor is sampled with 90% chance from [0px, 25px] and 10%
chance from [25px, 125px] to ensure both small and large

displacements. In this way, the model is able to learn to do

local refinements as well as to handle larger offsets of joints

in spurious body configurations.

(T2) Switch symmetric joints of the same person (e.g. re-

place left shoulder by right shoulder) - with probability 10%
per pair of joints. Such type of noise is a usual failure

case of pose estimators, which occasionally confuse sim-

ilarly looking left and right limbs or whether the joints are

faced from the front or from the back.

(T3) Replace joints of a person by joints of the

same/symmetric type of neighboring persons (e.g left hip of

person A is replaced by the neighboring left/right hip of per-

son B). Such synthesis is possible only when the pose estim-

ation dataset contains multiple annotated people in the same
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GT Pose Initial Pose [46] Refined Pose GT Pose Initial Pose [17] Refined Pose

GT Pose Initial Pose [44] Refined Pose GT Pose Initial Pose [6] Refined Pose

Figure 4: Qualitative results on the MPII Single-Pose dataset (top) and MPII Multi-Pose dataset (bottom). The blue

circles denote the areas where the PoseRefiner brings significant improvement. Our refinement method provides better

localization for the challenging keypoint extremities (ankles and wrists), can remove confusions between symmetrical joint

types (right ankle in top right and left ankle in bottom left figures) and can recover spurious joints (left wrist in top left

figures) or missing joints (right hip in bottom right figures) by reasoning about the pose structure of the target person.

image. If such a neighbor joint exists in a 75px vicinity,

replacement is done with 30% probability. This transform-

ation models the pose estimation errors arising in crowded

scenes, when limbs of different people are merged together.

(T4) Remove body joint with 30% chance. This trans-

formation helps to simulate the common missing joint er-

ror of body pose estimators, which is usually introduced by

thresholding of low-confident keypoint detections.

Implementation Details. We implement our system using

the publicly available TensorFlow [1] framework.

Following [24], we rescale the input pose and image such

that the reference height of a person is 340 px. The height

of a person is estimated either from the scale of the ground

truth head bounding box (if available, as in the MPII Single

Person Dataset), or directly from the estimated input pose.

We also crop 250 px in each direction around the bounding

box of the input pose. This should standardize the input and

minimize the searching space of the joints, while providing

enough context to the PoseRefiner.

The input body pose estimate Pinput is encoded using

one binary channel for each body joint. Each channel con-

tains a circular blob of radius 15 px around the joint co-

ordinate. If there is no coordinate for the particular joint, the

respective channel will be the null matrix. This encoding

follows the encoding of the Poutput channels during train-

ing, which has been shown to work well for training strong

body part detectors [39, 24].

Our training procedure contains a data augmentation

step, which we employ for generating more training data.

We apply random rescaling ±30% and random flipping

around the vertical axis.

When no pre-training is applied, we initialize the net-

work with the weights of models trained on ImageNet [11].

For initialization of the extra convolutional filters corres-

ponding to additional channels of Pinput, we reuse the

weights corresponding to RGB channels of I .

Optimization is done using stochastic gradient descent

with 1 image per batch, starting with learning rate lr =
0.005 for one third of an epoch and continuing with lr =
0.02 for 15 epochs, lr = 0.002 for 10 epochs and lr =
0.001 for 10 other epochs. Training on the MPII dataset

(≈ 29k people) runs for 40 hours on one GPU 1.

4. Results

We now evaluate the proposed approach on the tasks of

articulated single- and multi-person pose estimation, and ar-

ticulated pose tracking.

1We use NVIDIA Tesla V100 GPU with 16 GB RAM
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4.1. Experimental Setup

We test our refinement network on three tasks involving

human body pose estimation: single-person pose estim-

ation, multi-person pose estimation and multi-person ar-

ticulated tracking. In each of these tasks, we refine the

predictions of several state-of-the-art methods by post-

processing each initially estimated body pose using the

PoseRefiner.

We experiment on four public challenges: MPII Hu-

man Pose [3] ("Single-Person" and "Multi-Person") and

PoseTrack [2] ("Single-Frame Multi-Person Pose Estima-

tion" and "Multi-Person Articulated Tracking").

Datasets. For fair comparison with the methods whose pre-

diction we refine, we follow the most common practices in

choosing the datasets for training the PoseRefiner.

For the MPII Human Pose challenges, we train on MPII

Human Pose only, whose training set contains ≈ 29k poses.

For evaluation, we report results on the test set of MPII

Human Pose, which includes 7, 247 sufficiently separated

poses used in the "Single-Person" challenge, as well as

4, 485 poses organized in groups of interacting people, used

in the evaluation of the "Multi-Person" challenge. Although

the protocol of the MPII Multi-Person task assumes that

the location and the rough scale of each group of people

is provided during test time, the PoseRefiner does not

require any of this information.

In the case of the PoseTrack challenges, we pretrain on

the COCO [31] train2017 set (≈ 150k poses), then fine-tune

on the MPII training set and afterwards on the PoseTrack

training set. Pretraining is needed as the PoseTrack training

set contains ≈ 61k poses, but only 2, 437 different identit-

ies, which do not cover a very high appearance variability.

Since the set of joint types differs across datasets (MPII an-

notates 16 keypoints, PoseTrack annotates 15 and COCO

annotates 17), we use the PoseTrack set of body joints

as reference and map all the other types to their closest

PoseTrack joint type. The COCO dataset does not provide

annotations for top-head and bottom-head, so we heuristic-

ally use the top most semantic segmentation vertex as the

top-head keypoint, and the midpoint between the nose and

the midpoint of the shoulders as the bottom-head keypoint.

Similarly, MPII does not provide annotations for the nose

joint, so we use the midpoint between the bottom-head and

top-head as a replacement. For evaluation, we report res-

ults on the PoseTrack validation set (50 videos, containing

18, 996 poses), which is publicly available.

Evaluation metrics. For each task, we adopt the evaluation

protocol proposed by the respective challenges.

On the MPII Human Pose (Single-Person) dataset, we re-

port the Percentage of Correct Keypoints metric calculated

with the matching threshold of half the length of the head

segment (PCKh@0.5), averaged across all joint types. We

also report the Area Under the Curve measure (AUC), cor-

responding to the curve generated by PCKh measured over

a range of percentages of the length of the head segment.

Since none of the metrics is sensitive to false-positive joint

detections, we do not remove non-confident predicted key-

points by thresholding them.

On the MPII Human Pose (Multi-Person) dataset, we

report the mean Average Precision (mAP) based on the

matching of body poses using PCKh@0.5, following the

evaluation kit of [39]. This metric requires providing a con-

fidence score for each detected body joint in addition to

its location. Since the confidence scores provided by the

PoseRefiner are in fact conditional probabilities of de-

tection, we use the initial confidence scores (before refine-

ment) that the input pose predictions come with.

On the Single-Frame Multi-Person Pose Estimation task

of PoseTrack, we report the same mAP metric as in MPII

Human Pose, with the slight difference that the rough scale

and location of people are not provided during test time, so

the mAP evaluation in PoseTrack does not require it.

On the Multi-Person Articulated Tracking task of

PoseTrack, we calculate the Multiple Object Tracking Ac-

curacy (MOTA) for each joint, and report mMOTA, aver-

aged across all joints. This metric requires providing a track

ID for each detected body pose, but no confidence score for

joint detections. Since the metric is sensitive to false posit-

ive keypoints, we threshold the low confidence joints with

the aim of removing incorrect predictions. We experiment-

ally find that removing all joint detections with confidence

scores less than τ = 0.7 provides the best trade-off between

the number of missed joints and the number of false positive

joints, both penalized in the calculation of MOTA.

4.2. SinglePerson Pose Estimation

The effect that the PoseRefiner has on the test set of

MPII Single-Person is shown in Table 1. We refine various

single person pose estimates given by different methods [24,

17, 7, 8], including the state of the art [46].

One can notice that the performance of [46, 8] is already

quite high, which motivates using less noise in the synthesis

of the input pose for training the refinement model for these

methods. Hence, we decrease the level of noise used in the

generation of input poses during training by switching off

all noise transformations, with the exception of (T1). We

do not find it necessary to change the original set of noise

transformations in any other experiment.

Using PoseRefiner as a post-processing step consist-

ently increases the performance of each method, with the

average improvement of mPCKh@0.5 and AUC ranging

from 0.3 to 6.8, while hurting neither metric. This shows

the generality and effectiveness of our refinement method

on single-person pose estimation, which already hints at its

use in other more complex tasks involving keypoint detec-
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Figure 5: Qualitative results on the PoseTrack validation set, before and after applying the proposed refinement. The

blue circles denote the areas where the proposed post-processing step brings significant improvement. The PoseRefiner

recovers missing joints (e.g. right elbow and right hip in top seq. - fr.2, right wrist in bottom seq. - fr.3) and helps with

confusions of symmetrical joints (left elbow in top seq. - fr.3, right hip in bottom seq. - fr.2).

Method mPCKh@0.5 AUC ∆

Pyramid Residual Module [46] 92.0 64.2 -

+ Refinement 2 92.0 64.7 +0.3

Adversarial PoseNet [8] 91.9 61.6 -

+ Refinement 2 92.1 63.6 +1.1

DeeperCut [24] 88.5 60.8 -

+ Refinement 89.1 62.3 +1.0

Chained Predictions [17] 86.1 57.3 -

+ Refinement 88.0 61.2 +2.9

Iterative Error Feedback [7] 81.3 49.1 -

+ Refinement 85.6 58.4 +6.8

Table 1: Effect of the proposed refinement over different

pose estimation methods on the MPII Single-Person [3] test

set. ∆ indicates the average improvement of mPCKh@0.5

and AUC after applying the pose refinement model.

tion, such as multi-person pose estimation in images and

multi-person articulated tracking.

We present the qualitative results on MPII Single Pose in

Figure 4. Our refinement network is able to correct confu-

sion between different joint types, recover from spurious or

missing keypoints and provide better overall localization of

joints.

2Using a refinement model trained with only (T1) transformations.

Method mAP ∆mAP

Associative Embedding [33] 77.5 -

+ Refinement 78.0 +0.5

Part Affinity Fields [6] 75.6 -

+ Refinement 76.9 +1.3

ArtTrack [23] 74.2 -

+ Refinement 75.1 +0.9

Varadarajan et al., arXiv’17 [44] 72.2 -

+ Refinement 75.1 +2.9

Table 2: Effect of the proposed refinement over different

methods on the MPII Multi-Person [3] test set. ∆mAP

indicates the improvement of mAP after applying the pro-

posed pose refinement network.

4.3. MultiPerson Pose Estimation

Since the output of a multi-person pose estimator is a set

of body poses in an image, we can use the PoseRefiner

to perform error correction on each estimated pose, inde-

pendently of the others.

Table 2 shows the quantitative effect that the refinement

post processing step has on several methods [33, 6, 23, 44]

applied on the MPII Multi-Person test set. It proves to help

the overall performance of each system, including the best

performing method [33] on this dataset, setting a new state

of the art of 78.0 mAP. Given that our system does not

have any influence over non detected people/human body

poses, the overall improvement (ranging from 0.5 mAP to
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Method mAP ∆mAP

ML_Lab [48] 71.9 -

+ Refinement 73.8 +1.9

ArtTrack [23] (best mAP) 3 68.6 -

+ Refinement (w/o nose) 70.0 +1.4

+ Refinement (with nose) 69.7 +1.1

BUTD [26] (best mAP) 67.8 -

+ Refinement 70.9 +3.1

Detect-and-Track [14] 60.4 -

+ Refinement 65.7 +5.3

Table 3: Effect of the proposed refinement on the PoseTrack

[2] validation set, the Single-Frame Multi-Person Pose Es-

timation challenge. ∆mAP indicates the improvement of

mAP after applying the pose refinement model.

2.9 mAP) can be considered significant for the localization

of joints.

Table 3 shows the results on the PoseTrack validation

set. We refine the pose predictions of methods proposed

for the Single-Frame Multi-Person Pose Estimation case

[48, 23, 26, 14]. They process images independently of each

other and optimize the mAP metric. We again observe con-

sistent improvements when employing the PoseRefiner,

managing to increase the best reported performance on the

dataset from 71.9 mAP [48] to 73.8 mAP.

In the case of ArtTrack [23], which does not output a

nose joint, we remove the missing keypoint from the ground

truth and from the evaluation procedure and report the ob-

tained result (68.6 mAP) on the remaining subset of joints

(64.0 mAP evaluated on all joints). After post processing

with the PoseRefiner, the nose joint is recovered, and

we report results for both evaluations: when removing the

nose joint from the evaluation procedure (70.0 mAP) and

when counting it into the evaluation (69.7 mAP). The fact

that the difference between the two is small shows that the

new nose joint is recovered and nearly as well localized as

the other joints. In addition, the overall performance after

the refinement step is increasing (68.6 → 69.7 mAP).

4.4. MultiPerson Articulated Tracking

Multi-Person Articulated Tracking involves detecting all

people in each frame of a video, estimating their pose and

linking their identities over time. We can therefore apply

the PoseRefiner on each estimated pose independently

of the others, while keeping the original identities of the

detected people. Table 4 shows the quantitative effect of

the proposed refinement step on the PoseTrack validation

3ArtTrack does not output a nose joint, so the evaluation before re-

finement is performed without considering this joint. Our refinement net-

work can recover the missing nose joint, leading to better performance

(68.6 → 69.7 mAP).

Method mAP mMOTA ∆mMOTA

BUTD [26] (best mMOTA) 62.5 56.0 -

+ Refinement 64.3 58.4 +2.4

Detect-and-Track [14] 60.4 55.1 -

+ Refinement 64.1 57.3 +2.2

ArtTrack [23] (best mMOTA) 4 66.7 50.2 -

+ Refinement (w/o nose) 66.5 53.3 +3.1

+ Refinement (with nose) 67.0 54.1 +3.9

ML_Lab [48] 71.9 48.6 -

+ Refinement 70.1 53.5 +4.9

Table 4: Effect of the proposed refinement on the PoseTrack

[2] validation set, the Multi-Person Articulated Track-

ing challenge. ∆mMOTA indicates the improvement of

mMOTA after applying the pose refinement model.

set. Note that there are cases in which the results of the

same method differ in Table 3 from Table 4, depending on

which metric the method optimizes. Although the refine-

ment only updates the coordinates of already detected body

poses and no tracklet IDs are changed, the overall mMOTA

improvement obtained by our system is significant (from

2.2 to 4.9 mMOTA). We show systematic improvement on

every tracking result we refine, including the predictions of

the method with the highest performance [26]. The state of

the art is hence extended, reaching 58.4 mMOTA on this

benchmark. Similar to the Multi-Person Pose Estimation

case, we recover the missing nose joint on ArtTrack and

manage to refine its overall tracking results by 3.9 mMOTA.

Qualitative results of multi-person articulated tracking are

presented in Figure 5.

5. Conclusion

In this work we proposed a human pose refinement

network which can be applied over a body pose estim-

ate derived from any human pose estimation approach. In

comparison to other refinement techniques, our approach

provides a simpler solution by directly generating the re-

fined body pose from the initial pose prediction in one for-

ward pass, exploiting the dependencies between the input

and output spaces. We report consistent improvement of

our model applied over state-of-the-art methods across dif-

ferent datasets and tasks, highlighting its effectiveness and

generality. Our experiments show that even top perform-

ing methods can benefit from the proposed refinement step.

With our refinement network we improve the best reported

results on MPII Human Pose and PoseTrack datasets for

multi-person pose estimation and pose tracking tasks.

4Although ArtTrack does not output a nose joint, our refinement net-

work can recover the missing nose joint, while improving overall perform-

ance (50.2 → 54.1 mMOTA).
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