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Abstract

Person re-identification (Re-ID) aims at recognizing the

same person from images taken across different cameras.

To address this task, one typically requires a large amount

labeled data for training an effective Re-ID model, which

might not be practical for real-world applications. To al-

leviate this limitation, we choose to exploit a sufficient

amount of pre-existing labeled data from a different (aux-

iliary) dataset. By jointly considering such an auxiliary

dataset and the dataset of interest (but without label in-

formation), our proposed adaptation and re-identification

network (ARN) performs unsupervised domain adaptation,

which leverages information across datasets and derives

domain-invariant features for Re-ID purposes. In our ex-

periments, we verify that our network performs favorably

against state-of-the-art unsupervised Re-ID approaches,

and even outperforms a number of baseline Re-ID methods

which require fully supervised data for training.

1. Introduction

Person re-identification (Re-ID) [21] has become pop-

ular research topic due to its application to smart city

and large-scale surveillance system. Given a person-of-

interest (query) image, Re-ID aims at associating the same

pedestrian from multiple cameras, matching people across

non-overlapping camera views. Yet, current Re-ID models

are still struggling to handle the problems with intensive

changes in appearance and environment. With recent ad-

vances in deep neural networks, several works have been

proposed to tackle the above challenges in supervised [15,

2, 9, 7, 23, 14] and unsupervised manners [17, 4, 13, 18].

However, the aforementioned methods are not able to

achieve satisfactory performances if the appearance or cam-

era settings of query images are very different from the

Figure 1: Illustration of cross-dataset person re-

identification (Re-ID). While Re-ID of images in the

target-domain dataset is of interest, no labeled data is

available for training. Our idea is to leverage information

from auxiliary labeled images in a distinct and irrelevant

source domain (i.e., dataset not of interest). With such

an unsupervised domain adaptation setting for learning

domain-invariant features, Re-ID in the target domain can

be performed accordingly.

training ones. This is known as the problem of domain

shift (or domain/dataset bias) and requires domain adapta-

tion [12] techniques to address this challenging yet practical

problem. Thus, several works [23, 3] have been proposed

to generalize the discriminative ability across different

datasets by increasing the cross-domain training samples

with style transfer methods. Zhong et al. [23] smooth style

disparities across the cameras with style transfer model and

label smooth regularization. Similarly, Deng et al. [3] fur-

ther add similarity constraints to enhance the performance

on cross-domain Re-ID task. However, the adaptation mod-

els based on style transfer are not necessary to preserve the
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identity during the image translation procedure, and this re-

sults in unsatisfactory performance when no corresponding

identities appear in both domains/datasets.

To address the domain shifts between datasets, we pro-

pose a deep architecture to perform cross-domain Person

Re-identification with the only supervision from a single

dataset/domain as shown in Figure 1. Toward this end,

with the labeled data, our model derives the discrimina-

tive property to distinguish the images between different

classes. To perform such property on alternative domain

without annotation, our model learns to adapt the discrim-

inative property from supervised (i.e., source) to unsuper-

vised (i.e., target) domain. This is achieved by decomposing

the cross-domain feature into domain-invariant and domain-

specific one. Once the domain-invariant feature is learned,

our model can perform cross-domain Re-ID by matching

the query image and gallery images in the shared latent

space. To further enhance the discriminative property of our

proposed model, we aim at increasing the margin between

the classes with our proposed contrastive objective, which

is later verified in the experiment.

The contributions of our paper can be summarized as fol-

lows:

• We address unsupervised person Re-ID by exploiting

and adapting information learned from an auxiliary la-

beled dataset, which can be viewed as a unsupervised

domain adaptation approach.

• Our proposed Adaptation and Re-ID Network (ARN)

aims at learning domain-invariant features for match-

ing images of the same person, while no label informa-

tion is required for the data domain of interest.

• Our ARN not only performs favorably agianst state-of-

the-art Re-ID approaches in the unsupervised setting, it

also outperforms baseline supervised Re-ID methods.

2. Related Works

2.1. Person Re-Identification (Re-ID)

Supervised Learning for Re-ID: Most existing Re-ID

models are learned in a supervised setting. That is, given a

sufficient number of labeled images across cameras, tech-

niques based on metric learning [2] or representation learn-

ing [9] can be applied to train the associated models. Cheng

et al. [2] propose a multi-channel part-based convolutional

network for Re-ID, which is formulated via an improved

triplet framework. Lin et al. [9] present an attribute-person

recognition network which performs discriminative em-

bedding for Re-ID and is able to make a prediction for

particular attributes. While promising performances have

been reported on recent datasets (e.g., Market-1501 [20],

DukeMTMC-ReID [22]), it might not be practical since col-

lecting a large amount of annotated training data is typically

computationally prohibitive.

Unsupervised Learning for Re-ID: To alleviate the

above limitation, researchers also focus on person Re-ID

using unlabeled training data [4, 17]. For example, Fan et

al. [4] apply techniques of data clustering, instance selec-

tion, and fine-tuning methods to obtain pseudo labels for the

unlabeled data; this allows the training of the associated fea-

ture extractor with discriminative ability. Wang et al. [17]

propose a kernel-based model to learn cross-view iden-

tity discriminative information from unlabeled data. Nev-

ertheless, due to the lack of label information for images

across cameras, unsupervised learning based methods typ-

ically cannot achieve comparable results as the supervised

approaches do.

2.2. Cross-Domain Re-ID

Recently, some transfer learning algorithms [5, 13] are

proposed to leverage the Re-ID models pre-trained in source

datasets to improve the performance on target dataset. Geng

et al. [5] transfer representations learned from large image

classification datasets to Re-ID datasets using a deep neural

network which combines classification loss with verifica-

tion loss. Peng et al. [13] propose a multi-task dictionary

learning model to transfer a view-invariant representation

from a labeled source dataset to an unlabeled target dataset.

Besides, domain adaption and image–to–image transla-

tion approaches have been applied to Re-ID tasks increas-

ingly, Deng et al. [3] combine CycleGAN [24] with simi-

larity constraint for domain adaptation which improve per-

formance in cross-dataset setting. Zhong et al. [23] intro-

duce camera style transfer approach to address image style

variation across multiple views and learn a camera-invariant

descriptor subspace.

2.3. Domain-Invariant Feature Learning

We deal with the cross-domain Re-ID by learning

domain-invariant feature. Here we review the recent

works [16, 1, 11, 10] on learning domain-invariant fea-

ture. In order to achieve cross-domain classification tasks,

Tzeng et al. [16] present domain confusion loss to learn

domain-invariant representation. Bousmalis et al. [1] pro-

pose to extract the domain-invariant feature to improve the

performance of cross-domain classification task. On the

other hand, to tackle the problem of image style translation,

Coupled GAN [11] also learn to synthesize cross-domain

images from a domain-invariant feature. UNIT [10] fur-

ther learn a domain-invariant feature to translate the im-

age across domains. It is worth noting that, inspired by the

above methods, we address the cross-domain Re-ID task by

learning the domain-invariant feature for describing the hu-

man identity across distinct domains.

3. Proposed Method

Given a set of image-label pairs {Isi , y
s
i }

Ns

i=1
and another

set of images {Iti}
Nt

i=1
, where Ns and Nt denote the total

images of source and target dataset respectively, the goal
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Figure 2: The architecture of our Adaptation and Re-Identification Network (ARN). Note that the Encoder contains the two

shared modules (EI , EC), and two private modules (ET , ES). EI aims to retrieve visual feature maps (Xt, Xs), which are

fed into EC , ES , and ET for learning domain-invariant (shared) and specific (private) features. With the private (etp, esp) and

shared (etc, esc) latent features observed, the Decoder DC performs feature reconstruction for both target and source-domain

images. Finally, the classifier CS is designed to perform supervised learning from source-domain data.

of our model is to perform cross-dataset Re-ID by adapt-

ing the discriminative ability learned from source dataset to

unlabeled target dataset.

We present our Person Re-ID model trained in a super-

vised manner in section 3.1. To address the cross-dataset

Person Re-ID, our model leverages information from su-

pervised data and adapts it to unsupervised dataset in sec-

tion 3.2. Later in section 3.3, we demonstrate the learning

and evaluation of our proposed method.

3.1. Supervised Learning for Person Re­ID

To perform person re-identification, our model aims to

learn the image feature with discriminative property to dis-

tinguish between classes. With labeled data, such feature

property can be learned from image classification task. To

achieve this, we introduce encoder {EI , EC} and clas-

sifier CS to extract the image feature esc from source

dataset image Is and obtain its category prediction ŷs re-

spectively. Specifically, to reduce the training burden, pre-

trained model (e.g., ResNet) can be used for feature extrac-

tor module EI . Thus, we define the classification loss Lclass

to minimize the negative log-likelihood of the ground truth

label ys for source dataset image Is:

Lclass = −

Ns∑

i=1

ysi · log ŷ
s
i (1)

To further enhance the discriminative property of our
learned feature, we consider contrastive loss Lctrs [6] as

an additional objective of our model:

Lctrs =
∑

i,j

λ(esc,i − e
s
c,j)

2 + (1− λ)[max(0,m− (esc,i − e
s
c,j)]

2

(2)

where λ = 1 if {esc,i, e
s
c,j} belong to same category, and

λ = 0 if {esc,i, e
s
c,j} belong to different categories. Note

that m > 0 is a margin, which is regarded a radius around

Ec(xi). Dissimilar pairs contribute to the loss function only

if their distance is within this radius.

However, the above supervised model cannot be di-

rectly applied to alternative dataset without label annota-

tion. Thus, we further consider the adaption technique to

generalize the discriminative ability to dataset without any

label annotation.

3.2. Unsupervised Domain Adaptation for Cross­
Dataset Re­ID

Here we regard cross-dataset Re-ID as adaptation of dis-

criminative ability from supervised source dataset to unsu-

pervised target dataset. To this end, our model aims to elimi-

nate dataset shift in the procedure of inferencing discrimina-

tive feature. Thus, as depicted in Figure 2, our model first in-

troduces ES /ET to decompose visual feature maps Xs/Xt

into dataset-invariant feature esc/etc and dataset-specific fea-

ture esp/etp. Our model acquires discriminative ability by ap-

plying the dataset-invariant feature esc to predict its corre-

sponding category. Once such feature is learned, even with-

out supervision in target dataset, we can transfer discrimi-

native knowledge from supervised to unsupervised dataset.
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Figure 3: When performing Re-ID using our ARN, only EI

and Ec in the latent encoder are required. That is, we match

the latent feature eqc of person-of-interest (in the dataset)

with the latent feature etc of the test image by calculating

the similarity ranking.

With the goal of reducing information loss in the above

procedure for compressing the visual feature maps, here we

consider a decoder DC to reconstruct visual feature maps

Xt/Xs from the compact domain-invariant and specific fea-

tures (etc, e
t
p)/(e

s
c, e

s
p). Thus, we define reconstruction loss

Lrec as:

Lrec =

Ns∑

i=1

‖Xs
i − X̂s

i ‖
2

2
+

Nt∑

i=1

‖Xt
i − X̂t

i‖
2

2
(3)

where Xs
i /Xt

i and X̂s
i /X̂t

i denote encoded and recon-

structed the visual feature maps for source/target dataset re-

spectively.

Note that the above learning objectives cannot ensure

that the dataset-invariant and specific feature are mutual

exclusive and independent, we therefore introduce a dif-

ference loss Ldiff to encourage the orthogonality between

these two features:

Ldiff = ‖Hs
c
⊤

Hs
p‖

2

F
+ ‖Ht

c

⊤

Ht
p‖

2

F
(4)

where Hs
c and Ht

c be matrices whose rows are the latent

shared representations esc = EC(X
s) and etc = EC(X

t).

Hs
p and Ht

p are obtained in a similar manner. Note that ‖·‖
2

F

is the square Frobenius norm.

3.3. Learning and Performing Re­ID

In sum, the total training objective Ltotal for our ARN
can be written as follows:

Ltotal = Lclass + α · Lctrs + β · Lrec + γ · Ldiff (5)

where α, β, and γ are hyper-parameters that control the in-

teraction of the total loss. We train our model by the mini-

mizing Ltotal in an end-to-end manner. Once the model is

learned, as shown in Figure 3, our model performs Re-ID

by measuring the cosine similarity of features of query and

gallery images.

Note that our ARN is able to perform Re-ID task in

the unsupervised dataset by adapting discriminative ability

from source to target domain.

4. Experiments

We now evaluate the performance of our proposed net-

work, which is applied to perform cross-domain Re-ID

tasks. To verify the work of each component in ARN, we

provide ablation studies in Section 4.3. Furthermore, in Sec-

tion 4.4, we compare the performance of our ARN with sev-

eral supervised and unsupervised methods.

4.1. Datasets

To evaluate our proposed method, we conduct experi-

ments on Market-1501 [20] and DukeMTMC-reID [22], be-

cause both datasets are large-scale and commonly used. The

details of the number of training samples under each camera

are shown in Table. 1.

Market-1501 [20] is composed of 32,668 labeled im-

ages of 1,501 identities collected from 6 camera views. The

dataset is split into two non-over-lapping fixed parts: 12,936

images from 751 identities for training and 19,732 images

from 750 identities for testing. In testing, 3368 query im-

ages from 750 identities are used to retrieve the matching

persons in the gallery.

DukeMTMC-reID [22] is also a large-scale Re-ID

dataset. It is collected from 8 cameras and contains 36,411

labeled images belonging to 1,404 identities. It also consists

of 16,522 training images from 702 identities, 2,228 query

images from the other 702 identities, and 17,661 gallery im-

ages.

We use rank-1 accuracy and mean average precision

(mAP) for evaluation on both datasets. In the experiments,

there are two source-target settings:

1. Target: Market-1501 / Source: DukeMTMC-reID.

2. Target: DukeMTMC-reID / Source: Market-1501.

4.2. Implementation Details

ARN. Following Section 3, we use ResNet-50 pre-

trained on ImageNet as our EI model in the encoder. In

order to perform the latent embedding easily for the mod-

ules ET , EC , and ES , we remove the last few layers includ-

ing average pooling from the pre-trained ResNet-50 model.

The input of the EI will be images with size 224×224×3,

denoting width, height, and channel respectively. In this

manner, the output of EI is the feature-map X with size

7×7×2048 and will be fed into ET , EC , and ES to obtain

the corresponding feature with size 1× 1× 2048, which is
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Table 1: Numbers of training samples and cameras in

Market-1501 and DukeMTMC-reID datasets.

Market-1501 DukeMTMC-reID

camera # of images camera # of images

1 2017 1 2809

2 1709 2 3009

3 2707 3 1088

4 920 4 1395

5 2338 5 1685

6 3245 6 3700

7 1330

8 1506

then flatten to private ep or sharefji32l4d ec latent feature

with size 2048 as the final output of the encoder. Note that

ET , EC , and ES are implemented with fully convolution

networks (FCNs) which contains three layers.

The input of our decoder Dc is the concatenated latent

feature (ec, ep) with size 4096. We also implement the la-

tent decoder Dc with fully convolution network. The output

size of the decoder Dc is 7 × 7 × 2048, which is identical

to the input of ET , EC , and ES modules. Note that the con-

catenated vectors in both domains, (etc, e
t
p) and (esc, e

s
p), are

fed into the latent decoder simultaneously during the train-

ing procedure.

The classifier CS contains only fully connected layers

with dropout mechanism. We only feed the shared latent

feature esc into the classifier. The output is the classification

result among the identities. That is, the output size would be

702 if the source domain is DukeMTMC-reID [22] or 751

if the source domain is Market-1501 [20].

Learning procedure. As mentioned in Section 3, we

aim to minimize the total loss Ltotal in Equation 5 during

the training procedure. The parameters α, β, and γ are cho-

sen under the experimental trials. In practice, we set α, β,

and γ as 0.01, 2.0, and 1500, respectively. We aim to bal-

ance the larger value of Lctrs and the smaller one of Ldiff .

In addition, we need larger weight to enforce the reconstruc-

tion.

While we can directly use the same learning rate for each

component to update the whole network, it might result in

overfitting issues. We believe that individually setting the

customized learning rates for EI , ET , EC , ES , DC , and

CS can avoid this problem. For instance, when minimizing

Lclass and Lctrs, the weights of the pre-trained model EI

should not be updated faster than other modules because we

try to keep much useful pre-trained weights ever trained on

ImageNet. Hence, we set the learning rate for EI to a rela-

tively small value, 10−7, and only tune EI in the first few

epochs. In addition, we set the learning rate of ET , EC , ES ,

DC to 10−3, and CS to 2 × 10−3. We adopt the stochastic

gradient descent (SGD) to update the parameters of the net-

work.

Evaluating procedure. At the end of the learning sce-

nario, we proceed to evaluate the performance of our trained

network on Re-ID task. We only use EI and Ec in the en-

coder for generating the latent features in evaluating sce-

nario. For performance evaluation, we sort the cosine dis-

tance between the query and all the gallery features to ob-

tain the final ranking result. Note that the cosine distance

is equivalent to Euclidean distance when the feature is L2-

normalized. Moreover, we employ the standard metrics as in

most person Re-ID literature, namely the cumulative match-

ing curve (CMC) used for generating ranking accuracy, and

the mean Average Precision (mAP).

4.3. Ablation Studies

In this subsection, we aim to fully analyze the effective-

ness of our ARN via comparing with other baseline settings.

As shown in Table 2, we compare our final version model

with the ones removing supervised losses Lctrs, Lclass in

source domain or private components ES , ET . For dataset

Market-1501 and DukeMTMC-reID, our full model can

achieve 70.3% and 60.2% at Rank-1 accuracy, and 39.4%
and 33.4% at mAP respectively.

Reconstruction loss Lrec. For the target dataset on

Market-1501 and DukeMTMC-reID, we observe that the

Rank-1 accuracy of baseline model without Lctrs, Lclass,

ES , and ET , containing only the reconstruction loss Lrec,

decrease by 25.8% and by 29% respectively. However, this

shows that the reconstruction loss does play a great role in

learning basic latent representation, which can still achieve

44.5% and 31.2% at Rank-1 accuracy. We note that without

Lctrs, Lclass, we are not able to fine-tune EI and let EI

keep its original pre-trained weights on ImageNet.

Source supervised losses Lctrs,Lclass. Refer to Ta-

ble 2 again, we also observe that without supervised loss

Lctrs,Lclass, the Rank-1 accuracy decrease by 18.1% and

by 21.4% on Market-1501 and DukeMTMC-reID respec-

tively. This obvious drop indicates that supervised metrics

on source domain has largely improved the performance of

our ARN model. We also conclude that the shared latent

space does need the losses Lctrs,Lclass to capture the se-

mantics of person information.

Private modules ET , ES . In Table 2, without private

modules ET , ES , the Rank-1 accuracy decrease by 9.8%
and by 11.8% on Market-1501 and DukeMTMC-reID re-

spectively. We conclude that without partitioning the space

to produce a private representation, the feature space may

be contaminated with aspects of the noise that are unique

for each dataset. Hence, having the private modules ET , ES

does help perform representation learning in the shared la-

tent space.
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Table 2: Ablation studies of Adaptation and Re-Identification Network (ARN) under different experimental settings.

Method

Target: Market-1501

Source: DukeMTMC-reID

Target: DukeMTMC-reID

Source: Market-1501

R1 R5 R10 R20 mAP R1 R5 R10 R20 mAP

Ours w/o Lctrs, Lclass, ES , ET 44.5 63.2 70.4 78.5 20.3 31.2 42.5 50.1 57.4 18.4

Ours w/o Lctrs, Lclass 52.2 68.4 75.9 82.1 23.7 36.7 48.9 58.2 63.4 19.6

Ours w/o ES , ET 60.5 74.2 81.9 88.1 28.7 48.4 62.5 68.8 73.1 26.8

Ours 70.3 80.4 86.3 93.6 39.4 60.2 73.9 79.5 82.5 33.4

Table 3: Performance comparisons on Market-1501 with su-

pervised and unsupervised Re-ID methods.

Method Rank-1 Rank-5 Rank-10 mAP

S
u

p
er

v
is

ed

BOW [20] 44.4 - - 20.8

LDNS [19] 61.0 - - 35.7

SVDNET [15] 82.3 - - 62.1

TriNet [7] 84.9 - - 69.1

CamStyle [23] 89.5 - - 71.6

DuATM [14] 91.4 - - 76.6

U
n

su
p

er
v

is
ed

BOW [20] 35.8 52.4 60.3 14.8

UMDL [13] 34.5 52.6 59.6 12.4

PUL [4] 45.5 60.7 66.7 20.5

CAMEL [18] 54.5 - - 26.3

SPGAN [3] 57.7 75.8 82.4 26.7

Ours 70.3 80.4 86.3 39.4

4.4. Comparison with State­of­the­art Methods

Market-1501. In Table 3, we first compare our model

with the unsupervised methods. For the hand-crafted fea-

tures based models, we compare our model with Bag-

of-Word (BOW) [20]. For the cross-domain Re-ID mod-

els, there are Unsupervised Multi-task Dictionary Learn-

ing (UMDL) [13], Progressive Unsupervised Learning

(PUL) [4], Clustering-based Asymmetric Metric Learning

(CAMEL) [18] and Similarity Preserving Generative Ad-

versarial Network (SPGAN) [3]. Our model outperforms

these models in Rank-1, Rank-5, Rank-10, and mAP on

Market-1501. Note that our model outperforms the second

best method by 13.6% in Rank-1 accuracy and by 12.7% in

mAP.

In addition, we also compare our model with exist-

ing supervised models, observing that our model surpasses

BOW [20], LDNS [19] and already boost the performance

closely to supervised deep learning based model like SVD-

NET [15], TriNet [7], CamStyle [23], or DuATM [14].

DukeMTMC-reID. In Table 4, our model outperforms

unsupervised methods such as BOW [20], UMDL [13],

PUL [4], and SPGAN [3]. Our model achieves Rank-1 ac-

curacy=60.2% and mAP=33.4% and outperforms the sec-

ond best method [3] roughly by 13.8% in Rank-1 accuracy

Table 4: Performance comparisons on DukeMTMC-reID

with supervised and unsupervised Re-ID methods.

Method Rank-1 Rank-5 Rank-10 mAP

S
u

p
er

v
is

ed

BOW [20] 25.1 - - 12.2

LOMO [8] 30.8 - - 17.0

TriNet [7] 72.4 - - 53.5

SVDNET [15] 76.7 - - 56.8

CamStyle [23] 78.3 - - 57.6

DuATM [14] 81.8 - - 64.6
U

n
su

p
er

v
is

ed BOW [20] 17.1 28.8 34.9 8.3

UMDL [13] 18.5 31.4 37.6 7.3

PUL [4] 30.0 43.4 48.5 16.4

SPGAN [3] 46.4 62.3 68.0 26.2

Ours 60.2 73.9 79.5 33.4

and by 7.2% in mAP. More importantly, the performance of

our model is better than some supervised methods such as

BOW [20] and LOMO [8].

5. Conclusions

In this paper, we presented a deep learning model of

Adaptation and Re-Identification Network (ARN) for solv-

ing cross-domain Re-ID tasks. Our ARN allows us to jointly

exploit a pre-collected supervised source-domain dataset

and a target-domain dataset of interest by learning domain

invariant and discriminative features. As a result, Re-ID in

the target-domain can be performed even without any label

information observed during training. With this proposed

unsupervised domain adaptation network, we conducted ex-

periments on Market-1501 and DukeMTMC-reID datasets,

and confirmed the effectiveness of our model in such a

challenging unsupervised learning setting. Moreover, our

method also performed favorably against a number of base-

line supervised Re-ID approaches, which again supports the

use of our ARN for practical Re-ID tasks.
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