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Abstract

Depth estimation from multi-view stereo images is one

of the most fundamental and essential tasks in understand-

ing a scene imaginary. In this paper, we propose a machine

learning technique based on deep convolutional neural net-

works (CNNs) for multi-view stereo matching. The pro-

posed method measures the matching cost to extract depth

values between two-view stereo images among multi-view

stereo images using a deep architecture. Moreover, we

present the confidence estimation network for incorporat-

ing the cost volumes along the depth hypothesis in multi-

view stereo. Experiments show that our estimated depth

map from multiple views shows the better performance than

the other matching similarity measure on DTU dataset.

1. Introduction

Perceiving 3-D structure of a scene undoubtedly plays a

fundamental role in understanding real-world imagery, and

is essential for numerous computer vision and computa-

tional photography applications, such as image recognition

[20] or reconstruction [7, 22].

To reliably estimate depth information from multi-view

images, most of methods have tried to estimate dense corre-

spondences between two-view stereo images or multi-view

stereo images [3, 6]. First of all, in two-view stereo match-

ing settings, most approaches compare the patches of given

center pixel in the reference image and patches from cor-

responding pixel according to the disparity hypothesis, and

their matching similarity is calculated [3]. To measure the

similarities between patch candidates, many methods have

been proposed, such as sum-of-squared difference and zero

mean normalized cross-correlations [12, 5] that are invari-

ant to radiometric changes and shadows. Nowadays, with

the advent of deep convolutional neural networks (CNNs),

which has succeeded in numerous computer vision tasks

such as object detection, classification and semantic seg-

mentation methods to learn the similarity measure are pop-

ularly proposed by leveraging CNNs [26, 18].

Unlike two-view stereo matching settings, depth infor-

(a) 2 view (b) 3 view

(c) 5 view (d) Ground truth

Figure 1. Comparison of depth estimated with different number of

views are given: (a) 2 view, (b) 3 view, and (c) 5 view. In (d)

ground truth, blue region represents non-depth values and back-

ground.

mation also can be estimated from multi-view stereo im-

ages [16]. It is advantageous that the occlusions can be ef-

fectively dealt with multi-view stereo images taken under

various view points, which make the 3D reconstruction re-

sults more robust [2]. Figure 1 shows the improvement of

matching quality. The number of outliers in depth map are

reduced with increasing views in depth estimation. Similar

to two-view stereo matching settings, given the depth hy-

pothesis, we can measure the similarity of pixels from ref-

erence view and corresponding pixels from the other view

by converting the 3D points by triangulation using depth,

camera intrinsic and extrinsic parameters [24].

Even though numerous researches have been studied for

leveraging the machine learning technique in stereo cor-

respondence, learning a similarity measure for multi-view

stereo images has not been studied a lot. As a pioneer-

ing work, Hartmann et al. [6] directly measures the multi-

view similarities using CNNs that takes multi-view image
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patches corresponding to the depth hypothesis and outputs

the similarity score. However, during training, positive and

negative samples are selected manually, and thus it can not

compare all patches along depth hypothesis.

In this paper, we propose a novel deep architecture for

multi-view stereo matching task, consisting of feature ex-

traction network, confidence estimation network and depth

regression network. Our method measures the matching

costs between multi-view images by extracting CNN-based

features for each image. Furthermore, given multiple view

images, we improve the matching quality by estimating the

confidence of matching cost in two-view stereo case. Fi-

nally, we refine the depth inferred from the cost volumes

generated in multi-view stereo utilizing the additional re-

gression network. Experimental results show the state-of-

the-art performance of our method on multi-view stereo

matching settings.

2. Related Work

Feature descriptors play an important role in the task of

matching such as stereo matching[15], flow estimation[6],

and dense correspondence[9] in matching task. In order for

the reliable matching, feature descriptors are designed to

have characteristics which are invariant to illumination and

geometric variations. Before the advent of machine learn-

ing, hand-crafted feature descriptors are proposed such as

SIFT[17] which utilizes histograms of the gradient orien-

tation in the local patches and SURF[1] which reduces the

computational complexity by utilizing integral images.

In multi-view stereo matching, hand-crafted descriptors

are commonly used. T.Kanade et al.[12] and compute the

sum of absolute distance (SAD) which is the simplest sim-

ilarity measure along the epipolar line of the other images.

Also, zero-mean-normalized cross-correlation (ZNCC) [5]

which can tolerate brightness variations can be used. Re-

cently, with the machine learning techniques, Zbontar et

al.[26] proposed a convolutional neural networks (CNNs)

based approach to compare patches for computing the

matching cost in stereo problem and outperformed the con-

ventional hand-crafted descriptors. Also, in multi-view

stereo settings, Hartmann et al. [6] suggested the CNN-

based the multi-view similarities measures using siamese

network which takes multi-view image patches and outputs

the similarity score along the depth hypothesis.

In order to improve the matching performance in stereo-

matching, estimating confidence of the computed matching

cost is becoming important issue. Confidence measures can

be used for detecting occlusions [8], and improving over-

all depth map accuracy [19]. Haeusler et al. [27] proposed

a random forest classifier utilizing features generated from

matching cost volume to learn the confidence. With deep

learning techniques, confidence prediction in stereo match-

ing have been recently studied [21].

3. Proposed Method

3.1. Problem formulation and overview

Given multi-view images, the objective of multi-view

stereo matching is to estimate depth from the possible depth

candidates with the matching costs across multiple images.

By leveraging a camera pose between views and intrinsic

parameters, N warped image planes are first generated ac-

cording to derive N depth hypothesis. The depth map is

then acquired by choosing the best image plane for each

pixel that has the best matching similarity score [3].

To define the matching costs, conventional methods such

as sum of absolute differences (SAD) [12] and zero-mean-

normalized cross-correlation (ZNCC) [5], are commonly

used [28]. However, since they are formulated in a hand-

crafted manner, they provide limited performances in mea-

suring reliable patch similarities. To overcome this lim-

itation, we leverage deep convolutional neural networks

(CNNs) to extract the robust convolutional features and

measure the similarity between multiple patches (Section

2.2). Moreover, to boost the matching quality, we also pro-

pose the confidence estimation network (Section 2.3). Fi-

nally, we design the depth regression network in order to

post-process the depth gained from the cost volume in the

multi-view stereo (Section 2.4).

3.2. Feature extraction network

To estimate matching costs for multi-view stereo images,

we first present the feature extraction network. To deal

with geometric variations across multi-view images, it con-

sists of two major components; the image sampler in spatial

transformer networks (STN) [10] and siamese feature ex-

traction networks, whose inputs are warped images by the

image sampler. The warping process is implemented by im-

age sampler [10] from the STN. The grid of image sampler

is determined by considering their camera extrinsic param-

eters R, T and intrinsic parameters K as follows:

[x̂n, ŷn, ŵn]
T = K(R(K−1pdn) + T ). (1)

where p = [x, y, 1]T is a pixel in uniform gird, dn is the n-

th depth value, and the location of corresponding n-th grid

is calculated as xn = x̂n/ŵn, yn = ŷn/ŵn. For normalized

patches, the siamese network is used to extract the feature

to distinguish between similar and dissimilar patches of im-

ages. Formally, our siamese network consists of 5 consec-

utive convolutions of 3 × 3 filter size and ReLu operators.

ReLu operator after the last convolution do not exist and the

last layer normalizes the activations to have an unit norm for

reliable comparison of descriptors. In addition, the network

does not have pooling operator or convolution with more

than 1 stride in order to make resolution of the output same

as input.
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Figure 2. Overall architecture of generating cost volume in multi-view stereo. In order to train descriptors in multi-view stereo, descriptor

network is proposed which consists of image sampler and siamese network. Also, for aggregating cost volumes generated by each two-

views, we propose confidence estimation network. In multi-view stereo, the final matching cost in multiple view is made by confidence

weighted sum of each cost volume.

After passing through the siamese networks with pa-

rameters Ws, the output F(Iref , Ioth;Ws) is H × W ×
D × (N + 1) descriptor volumes generated for N warped

images from another view image Ioth according to sin-

gle reference image Iref , where H , W are the image size

and D is the size of the descriptor. Here, we denote

Fn(p) = [fn(p, 1), ..., fn(p, D)] as the feature represen-

tation of pixel p from n-th warped image planes which has

D dimensions. Similarly, Fref is denoted as the feature rep-

resentation from reference image. For each pixel p, n-th

cost volume is then constructed such that

Cn(p) =

D∑

k=1

|fref(p, k)− fn(p, k)|1. (2)

Across these cost volumes C(p) = [C1(p), ..., CN (p)], the

depth map can be estimated by selecting the best matching

similarity score among N depth hypothesis. The training

procedure and the loss are explained in Section 2.4

3.3. Confidence Estimation Network

In traditional two-view stereo settings, there can exist

the limitations on estimated depth maps due to occlusion

or noise. Given multi-view images, estimating depth infor-

mation can be divided into multiple two-view stereo set-

tings, and thus occlusion problems can be solved by re-

garding the other view cost volumes. In other words, we

can complement the matching similarity estimated from a

two-view stereo within occlusion region by considering the

cost volume from another two-view stereo. Thus, in order

to enhance the depth estimation quality, multiple images

can be explicitly used for selecting the best depth hypoth-

esis. In [6], multiple view images go into the input to the

multi-patch similarity network for inferring the best match-

ing depth planes.

In this paper, we compare the two-view patch similarity.

By measuring the confidence of the cost volume constructed

by the process described in the previous section, we can

aggregate the cost volumes multiplied by the confidence. It

should be noted that estimating confidence has been studied

especially in stereo matching for a long time in order to

interpolate correspondence [14, 23]. We use the confidence

map to improve the performance of estimating depth from

multiple views by detecting outliers of the cost volume.

The confidence estimation network has 15 consecutive

convolutions of 5×5 filter size and ReLu operators for hav-

ing large receptive fields which enable the network consider

large size of cost volume. The last layer of the network is

a fully-connected layers which has two nodes and the out-

put is denoted by F(C;Wc) = [F1(C;Wc), F2(C;Wc)]
where Wc is the parameters of confidence estimation net-

work. The estimated confidence c is the softmax normalized

of the value of true confidence F1(C;Wc) which results in

continuous value between 0 and 1. Given multiple images,

we can aggregate the cost volumes generated by each two-

view by weighting the confidence c.

3.4. Depth Regression Network

In the plane-sweeping stereo setting, the depth map is

induced by choosing the minimum cost of the cost volume

constructed by measuring the difference between features

from reference image and the corresponding depth image

planes along the depth candidates. However, deriving the

depth from the cost volume directly limit the quality of

depth due to noise of the cost volumes caused by the un-

corrected matching in multi-view stereo. Also, the quality

of depth estimated by conducting argmin operation can be

degraded by the reason that the depth hypothesis are dis-

crete. In order to solve the problem as described above, we

suggest the depth regression network to aggregate the cost

volume in multi-view stereo.

The depth regression network takes the input of the

confidence-weighted sum of multiple cost volumes con-

structed by two-view stereo. The network architecture is
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(a) Reference view (b) Ground truth

(c) SAD (d) ZNCC

(e) SIFT (f) Ours

Figure 3. For comparison of qualitative evaluations of descriptors,

results of plane sweeping method in (a) reference view are pre-

sented: (c) SAD, (d) ZNCC, and (e) SIFT, and (f) our learned

descriptor. In (b) ground truth, blue region represents non-depth

values and background.

described in Table 1. From Layer 1 to 5, the cost volume

is down-sampled by convolution with stride 2 in order to

consider large receptive field of cost volume in the network.

After series of up-convolutional and convolutional opera-

tions, the network generates refined cost volume, denoted

as Crefined, in which matching outliers are removed. The

depth is estimated by soft-argmin operation proposed by

GC-net[13] which enables to output the smooth the depth.

The soft-argmin operation is defined as follows:

dN∑

d=d1

d · (e−ti/
∑

j
e−tj ), (3)

where ti is i-th value of refined cost volume. The refined

cost volume Crefined is converted to depth probability dis-

tribution normalized by soft-max operation of negative cost

value.

(a)

(b)

(c)

(d)

Figure 4. Explanation of effect of confidence weighting. (a)

matching cost (correct), (b) matching cost (discorrect), (c) match-

ing cost averaged, and (d) confidence weighted sum of matching

cost. The red line shows the correct depth index.

Name Description Dimension

Cost Volume 300x400x256

Layer 1 conv 5x5, stride 2, relu 150x200x512

Layer 2 conv 3x3, stride 1, relu 150x200x512

Layer 3 conv 5x5, stride 2, relu 75x100x1024

Layer 4 conv 3x3, stride 1, relu 75x100x1024

Layer 5 conv 3x3, stride 1, relu 75x100x1024

Layer 6 upconv 4x4, stride 2 150x200x512

Layer 7 conv 3x3, stride 1, relu 150x200x512

Layer 8 upconv 4x4, stride 2 300x400x256

Layer 9 conv 3x3, stride 1, relu 300x400x256

Layer 10 conv 3x3, stride 1 300x400x256

Prediction Soft-argmin 300x400x1

Table 1. Illustration of depth regression network. It consists of

series of convolutions (conv), upconvolutions(upconv). All layers

have batch normalization operation. The output of the depth re-

gression network is the depth by conducting soft-argmin operation

on refined cost-volumes (Layer 10).

3.5. Training

We used the training dataset as the DTU dataset [11]

which captures the object in 49 different scenes. In DTU

dataset, We sampled 10 3D points clouds for generating

training labels. First, we convert the 3D points to the depth

map in each image using the camera intrinsic and its corre-
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sponding camera parameters in the DTU dataset. We train

the descriptor network by end-to-end learning where the

input of the network is two input images (reference and

another image) and the training label is the 128-level dis-

cretized depth map corresponding to reference image. In

training the confidence estimation network, the training la-

bel for confidence is obtained by comparing the depth from

cost volume and the ground truth depth. If the training label

is positive, depth value from cost volume is correct com-

pared to the ground truth depth value.

However, we have to distinguish whether each pixel is

suitable for training the descriptor network. During train-

ing, in order to the descriptor network only compare the

training-possible region, we perform the ray consistency

check. This consistency check is usually used in training

loss [4] and post-processing in stereo method[26]. In ray

consistency check in multi-view stereo method, given depth

map of the reference image, we can map the the pixel to the

3D point and find the corresponding pixel in the other im-

age with camera poses and intrinsic parameter. In the next

step, we check the depth of corresponding pixel and map

the pixel to the 3D point. If these two 3D points are very

close, we regard the pixel as valid for training. Also, since

the depth map is sparse and there do not exist the depth val-

ues in non-object regions, we train the descriptor network

only in the region where the depth value exists.

We train the descriptor network and confidence estima-

tion network by minimizing the cross-entropy loss using

stochastic gradient descent

L = −
∑

i

p(li) log
e−si

∑
j e

−sj
. (4)

In training the descriptor network, si is −Ci i.e. match-

ing similarity of i-th depth value. In the case of confidence

estimation network, si is Fi(C;Wc) i.e. the output vector

elements of confidence estimation network. p(li) is delta

function, it is 1 when the li is the ground truth label.

The depth regression network is trained with supervised

learning with the ground truth depth. We train our network

by reducing the absolute error between estimated depth, dn,

and ground truth depth ,d̂n, for all valid pixel n. The loss

for depth regression is defined as follows:

L =
∑

n

∥∥∥dn − d̂n

∥∥∥
1

. (5)

We train the descriptor network for 60, 000 iterations

with the learning rate 0.01 and a momentum of 0.9 and the

confidence estimation network for 10, 000 iterations with

the learning rate 0.0001 and a momentum of 0.9. Also,

the depth regression network is trained for 30, 000 iterations

with the learning rate 0.001 and a momentum of 0.9.

BUDDHA BIRD FLOWER Avg.

2 view - matching accuracy

SAD 0.6174 0.5415 0.4591 0.5393
ZNCC 0.6169 0.5642 0.4812 0.5541
SIFT 0.6201 0.5534 0.4641 0.5459
Ours 0.6717 0.5651 0.4751 0.5706

5 view - matching accuracy

SAD 0.6748 0.6215 0.4926 0.5936
ZNCC 0.6842 0.6156 0.5094 0.6027
SIFT 0.6934 0.6214 0.4975 0.5654

Ours(wo/c) 0.7142 0.6387 0.5012 0.6180
Ours(w/c) 0.7359 0.6794 0.5381 0.6511

Table 2. Comparison of quantitative evaluations on the DTU

dataset [11]. Matching accuracy of SAD, ZNCC, SIFT and our

descriptor is compared in 2-view case. Also, we compare match-

ing quality of the averaged cost volume of SAD, ZNCC, SIFT

and ours(wo/c) and confidence weighted sum of cost volume of

ours(w/c) given 5 views.

4. Experimental Results

We evaluated the performance of our proposed method

compared to other methods in multi-view stereo matching,

and analyzed the effect of confidence estimation in estimat-

ing depth given multiple views on DTU dataset [11].

Specifically, first, for measuring the matching perfor-

mance of descriptors, we evaluated our proposed feature

representation with SAD [12], ZNCC [5] similarity mea-

sure and SIFT[17] descriptor with the plane-sweeping al-

gorithm [3]. It should be noted that we did not apply any

post-processing scheme for measuring the matching quality

of descriptors. In experiments, we take the reference image

and another image from closest view to the reference view.

In this experiment on DTU data set, the image size was set

to 300×400 and the depth ranges are set to 0.38m to 0.9m.

Also, the discrete depth intervals were set to have 128 uni-

form intervals in the epipolar line. For a fair comparison,

since the receptive field size of our descriptor network is

11 × 11, we set the patch size of SAD and ZNCC to have

size of 11× 11. We tested three scenes containing different

objects: BIRD, BUDDHA, and FLOWER.

The quantitative results are shown in the Table 2. We

measured the accuracy of cost volumes generated from all

methods by comparing the estimated depth of a pixel is cor-

rect or not with respect to the ground truth label, where

the accuracy is the ratio of the correct pixel over the whole

pixel. Plane sweeping with our learned descriptors achieve

the best accuracy in all scenes, especially in the scene con-

taining BUDDHA, BIRD and FLOWER.

Figure 3 shows the plane-sweeping stereo results using

SAD, ZNCC, SIFT, and our learned descriptor when only
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Figure 5. Quantitative results in DTU dataset[11]. Values other than ours are from [6].

(a) SIFT (b) SAD (c) Ours (d) Ground truth

(e) SIFT (f) SAD (g) Ours (h) Ground truth

(i) SIFT (j) SAD (k) Ours (l) Ground truth

Figure 6. For comparison of qualitative evaluations of plane sweeping method using SIFT (1st column), SAD (2nd column), and our depth

estimation method (3rd column), and ground truth (4th column). In ground truth, blue region represents non-depth values and background.

two-views are given. We tested matching similarity when

the illumination changes are large in order to confirm the

robustness of illumination variation for all descriptors. The

results of our learned descriptors showed less noise on the

wings of BIRD than SAD, ZNCC and SIFT. Our descriptor

is more robust to photometric variations because the shad-

ows exist on the right wing.

Furthermore, in order to prove the performance of the

depth estimation improvement with confidence, we com-

pared the depth quality of averaged cost volume from

different views generated by our descriptor network, and

cost volume generated by confidence-weighted sum opera-

tion. The quantitative results were shown in Table 2. The

depth quality is improved with given multiple views com-

pared to given only two-views. Our averaged cost vol-

ume shows more accuracy than other methods since it has

shown prior performance only given in two views shown

in Table 2. Specifically, the confidence weighted-averaged
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cost-volume generated by our method shows better accu-

racy than averaged cost volume. Figure 4 represents costs

a pixel along the depth indices. Figure 4.(c) shows the av-

eraged cost of Figure 4.(a) and Figure 4.(b), and the result

shows false matching cost due to the negative effect of false

matching cost in Figure 4.(b). However, Figure 4.(d) which

are made by confidence weighted sum of matching costs

represent correct matching cost since it eliminates the neg-

ative effect of Figure 4. (b) by estimating confidence of it.

We output the final depth map with depth regression net-

work. The refined depth are mapped to 3D point clouds by

using camera parameters and compared with the evaluation

from [6] . The results are shown in Figrue 5. It should be

noted that our results and other results in Figure 5 are exper-

imented with different conditions: post processing method.

Our method shows more accuracy than other hand-crafted

measure and LIFT[25] especially in BUDDHA, and BIRD.

5. Conclusion

In this paper, the technique for measuring the matching

similarity in multi-view stereo matching was proposed, in-

cluding the learning descriptor in two-view stereo match-

ing and the learning confidence of matching of two-view

stereo case. With the estimated confidence, the matching

similarity was improved by solving the problem existed in

two-view stereo matching such as occlusion and matching

failure. Furthermore, the depth network enables refining the

cost volume and estimating smooth the depth values. Exper-

imental results have demonstrated the effect of learned de-

scriptor, matching improvement using confidence and depth

enhancement on multi-view stereo databases.
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