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Abstract— This paper presents a study on the use of Con-
volutional Neural Networks for camera relocalisation and its
application to map compression. We follow state of the art visual
relocalisation results and evaluate the response to different
data inputs. We use a CNN map representation and introduce
the notion of map compression under this paradigm by using
smaller CNN architectures without sacrificing relocalisation
performance. We evaluate this approach in a series of publicly
available datasets over a number of CNN architectures with
different sizes, both in complexity and number of layers. This
formulation allows us to improve relocalisation accuracy by in-
creasing the number of training trajectories while maintaining
a constant-size CNN.

I. INTRODUCTION

Following our recent work on point cloud compression

mapping via feature filtering in [1] and [2], we aim to

generate compact map representations useful for camera re-

localisation through compact Convolutional Neural Networks

(CNNs). This effort is motivated by the end-to-end approach

of CNNs and in order to extend such to map compression.

Overall, having a minimal map representation that enables

later use is a meaningful question that underpins many

applications for moving agents. In this work, we specifically

explore a neural network architecture tested for the relocal-

isation task; we study the response of such architecture to

different inputs – e.g. color and depth images –, and the

relocalisation performance of pre-trained neural networks in

different tasks.

Biologically inspired visual models have been proposed

for a while [3], [4]. How humans improve learning after

multiple training of the same view and how they filter useful

information have also been an active field of study. One

widely accepted theory of the human visual system suggests

that a number of brain layers sequentially interact from

the signal stimulus to the abstract concept [5]. Under this

paradigm, the first layers – connected directly to the input

signal – are a series of specialized filters that extract very

specific features, while deeper layers infer more complex

information by combining these features.

Finally, overfitting a neural network by excessive training

with the same dataset is a well known issue; rather, here we

study how the accuracy improves by revisiting the same area

several times introducing new views to the dataset.
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This paper is organized as follows. In Section II we discuss

work related to convolutional neural networks and camera

pose. Then, Section III introduces the notion of CNN map

representation and compression. The CNN architectures used

in the relocalisation task are then introduced in Section IV,

where we describe their architecture. Experimental results

are presented in Section V. Finally, we outline our discussion

and conclusions.

II. RELATED WORK

Even though neural networks are not a novel concept, due

to the increase in computational power, their popularity has

grown in recent years [6] [7]. Related to map compression,

dimensionality reduction through neural networks was first

discussed in [8]. In [9] an evaluation to up-to-date data en-

coding algorithms for object recognition was presented, and

it was extended in [10] to introduce the use of Convolutional

Neural Networks for the same task.

[11] introduced the idea of egomotion in CNN training

by concatenating the output of two parallel neural networks

with two different views of the same image; at the end, this

architecture learns valuable features independent of the point

of view.

In [12], the authors concluded that sophisticated archi-

tectures compensate for lack of training. [13] explore this

idea for single view depth estimation where they present a

stereopsis based auto-encoder that uses few instances on the

KITTI dataset. Then, [14], [15], and [16] continued studying

the use of elaborated CNN architectures for depth estimation.

Moving from depth to pose estimation was the next

logical step. One of the first 6D camera pose regressors

was presented in [17] via a general regression NN (GRNN)

with synthetic poses. More recently, PoseNet is presented

in [18], where they regress the camera pose using a CNN

model. In the same sense, [19] presented VidLoc, where they

improve PoseNet results in offline video sequences by adding

a biderctional RNN that takes advantage of the temporal

information in the camera pose problem. This idea is also

explored in [20] for image matching via training a CNN for

frame interpolation through video sequences.

III. MAP REPRESENTATION AS A REGRESSION

FUNCTION

From a human observer point of view, it is common to

think of spatial relationships among elements in space to

build maps; for this reason, metric, symbolic, and topological

are widely used map representations (such as probabilistic

[21], topological [22], and metric and topological [23] map
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representations). However, other less intuitive map represen-

tation have been proposed – e.g. [24] defines a map as a

collection of images and uses image batch matching to find

the current position in the map.

Overall, it can be argued that the map representation needs

not conform to a single representation type, and that the task

and other constraints can lead to different manners in which

a map can be represented. Ultimately, for a robotic agent,

maps are likely built to be explored or, more generally, re-

explored. Thus, it is highlighted once more that relocalisation

is a good measure of map effectiveness. In this context, the

actual map representation used is less relevant as long as it

allows relocalisation in a specific scene or task; therefore, we

propose a mapping process based on Convolutional Neural

Network, or CNN, to address the camera relocalisation

problem.

A CNN can be considered as a filter bank where the

filters’ weights are such that they minimize the error between

an expected output and the system response to a given

input. Figure 1 shows the elements from one layer to the

next in a typical CNN architecture – a more detailed CNN

implementation can be found in specialized works such as

[25] and [26]. From the figure, for a given input I and a

series of k filters fk, it is generated an output Îk = I ∗ fk,

where ∗ represents the convolution operator (hence, this layer

is also called convolutional layer), where the filters fk can

be initialized randomly or with pre-trained weights in a

different task. It is important to notice the direct relationship

between the input channels and the filters’ depth among

consecutive layers; it makes possible to work with different

n-dimensional inputs just by adjusting the first convolutional

layer depth.

n dimensional input

n dimensional filter

I …

h

w
n

f1

f2

f3

f4

fk

Î1 = I*f1

k dimensional output

Fig. 1: Convolutional Neural Network (CNN) elements. It

consist of an input I , a series of filters fk, and its associated

output Îk as a result of the convolution I ∗ fk. The filters’

depth n depends on the number of input channels.

As a result, in this work we represent a map as a regression

function p̂ = cnn(I), where each element of the population

is formed by an input I and its associated output p (e.g.

an RGB image and the 6-DoF camera pose, respectively).

The parameters in the regressor cnn are optimised from a

population sample; the more representative the sample, the

more accurate the model [27].

A. CON-POCO: CNN Map Compression

The notion of compression using a regression function

as a map representation is introduced as follows. First, a

population sample is defined as a collection of elements

(I, p) that represents a sensor’s travelled trajectory and,

further, this collection can be divided in training and testing

sets. From the training set, a regressor p̂ = cnn(I) is

proposed such that it minimises the error |p − p̂| over the

test set.

This regressor, once defined, will have constant size,

and should improve its performance while increasing the

training set size (e.g. by generating more training trajectories)

without increasing the regressor size itself. The compact

map representation under the CNN paradigm is then stated

as the problem of finding an optimal model cnn(I) that

keep minimum relocalisation error values given a population

sample.

IV. THE RELOCALISATION CNN

To evaluate the CNN map representation in the relocali-

sation task, we test several CNN architectures of the form

p̂ = cnn(I), where I is an input image and the expected

output is a 6-DoF pose p = [x, q], with x as the spatial

position and q as the orientation in quaternion form. We use

PoseNet loss function, as described in [18], that has the form:

loss(I) = ‖x̂− x‖2 + β

∥

∥

∥

∥

q̂ −
q

‖q‖

∥

∥

∥

∥

2

where PoseNet is based on the GoogLeNet arquitecture

[28], and β is a scale factor. As a reference, GoogLeNet has

7 million parameters but with a more elaborated architecture

[29]; in contrast, in this work to evaluate the relocalisation

performance with respect to the CNN size, we only vary the

number of convolutional layers and no interaction among

them is introduced. Learning the external parameters in a

CNN is time consuming because there is not really an

optimal approach to this task; for this reason, the use of

generic representations has been proposed such as in [30],

where the models trained in one task can be used in another,

a process known as transfer learning. Thus, we tested several

architectures using a series of pre-trained models on the

ImageNet dataset [31] and implemented in the MatConvNet

platform [32], as detailed bellow.

First, we use a relatively small CNN architectures with

different complexities, as in [10], with eight layers: five

convolutional and three fully-connected. We use three im-

plementations: a fast architecture (VGG-F) with 61 million

parameters (considering an RGB input), where the first con-

volutional layer has a four pixel stride; a medium architecture

(VGG-M) and 100 million parameters, where a smaller stride

and a smaller filter size with a bigger depth are used in the

first convolutional layer, and bigger filters’ depths are used

in the remaining convolutional layers. Finally, we study a

slow architecture (VGG-S), with a similar architecture and

number of parameters as in the VGG-M, but with a smaller

stride in the second convolutional layer.
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Moreover, we evaluated two long CNN architectures, as

in [33], one with 16 layers (13 convolutional and three fully

connected layers with 138 million parameters) or VGG-16,

and the other with 19 layers (16 convolutional and three fully

connected layers with a total of 144 million parameters),

referred as VGG-19. We introduce a couple of changes to

these networks as follows: the dimension in the first layer

depends on the input n; in addition, the final fully-connected

layer size changes to the pose vector length (i.e. from 4096

to 7).

To demonstrate the impact of smaller architectures in the

relocalisation problem, we evaluate their performance in the

St Marys Church sequence, a large scale outdoor scene [34],

with 1487 training and 530 testing frames, as shown in

Figure 2 and we only use RGB information as input, and pre-

processing the original input by cropping the central area and

resizing it, generating arrays of size 224x224. We compare

their performance against PoseNet, as reported in [18].

(a) (b) (c) (d)

Fig. 2: Typical views from the St Marys Church sequence

dataset [34].

The training process is described next. First, we use the

fast implementation (VGG-F) to find a valid range for the

hyper-parameters involved in the CNN response, namely

the batch size, the learning rate, and the weight decay.

Then, with this valid hyper-parameters range, we perform

a similar experiment using the proposed CNN architectures

for the relocalisation task in the same dataset (the St Marys

Church sequence) to find a valid hyper-parameters range

in all architectures. We evaluate twenty hyper-parameters

combination per architecture for 250 epochs.

Given the best hyper-parameters range from the process

described above (batch size of 30, weight decays of 5E-01,

and learning rates from 1E-06 to 1E-10), we perform an

evaluation of the relocalisation performance using smaller

CNN architectures than that in the original PoseNet. In

general, larger architectures present better performance; how-

ever, none of them outperforms the baseline, as described

bellow.

Figure 3 shows the error in position, defined as the

Euclidean distance between the expected position x and

the CNN response x̂, ep = ‖x − x̂‖; here, the minimum

error obtained was 4.76 meters using the VGG-19 CNN

architecture (for comparison, PoseNet’s error is 2.65 meters).

Then, the smallest error in orientation – in this work, it

is given by the angle between the two quaternion vectors

ea = cos−1(< q, q̂ >) – is 10.40◦, also given by the VGG-19

CNN architecture, and again PoseNet (whose error is 4.24◦)

outperforms in this scenario.

Given that a regression model performance increases with

the number of training samples, we perform a similar evalua-

tion in a larger dataset to assess their effect in the CNN map
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Fig. 3: Relocalisation performance to different CNN archi-

tectures in the St Marys Church dataset [34], where five

parameter combinations were used per architecture during

500 training epochs: batch size of 30, weight decays of

5E-01, and learning rates from 1E-06 to 1E-10, where the

position error is defined as the Euclidean distance between

camera positions x̂, ep = ‖x − x̂‖. In dotted lines are the

results for PoseNet as in [18].

0

5

10

15

20

25

30

35

0 1 2 3 4 5

R
e

lo
ca

li
sa

ti
o

n
 m

e
a

n
 e

rr
o

r 
[d

e
g

re
e

s]

VGG-F VGG-M VGG-S

VGG-16 VGG-19 PoseNet

Fig. 4: Orientation error, as the angle between quaternion

orientations ea = cos−1(< q, q̂ >). Parameters are as in to

Figure 3.

representation. In particular, we tested these implementations

in the TUM’s long household and office sequence [35] – a

texture and structure rich scene, with 21.5m in 87.09s (2585

frames), and a validation dataset with 2676 extra frames, as

can be seen in Figure 5.

(a) (b) (c) (d)

Fig. 5: Some scenes in the TUM long office sequence [35].

Figure 6 shows the relocalisation performance for dif-

ferent CNN architectures – to discover the difference in

performance between architectures, we use the Euclidean

distance between pose vectors e = ‖p − p̂‖ as error metric,

where p = [x, q], and p̂ is the estimated camera pose. It is

observed that, for some parameter combinations, there is no

significant difference in performance between short and long
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architectures, and therefore short architectures (i.e. compact

map representations) may be used in the relocalisation task

in such cases.
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Fig. 6: Relocalisation response, as the distance between pose

vectors e = ‖p − p̂‖, among different CNN architectures

in the TUM long office dataset [35]; each point represents

a hyper-parameter combination with a batch size of 30,

weight decays of 5E-01, and learning rates from 1E-06

to 1E-10. For the highlighted combinations, there is no

significant difference in the performance among short and

long architectures in this dataset.

V. EXPERIMENTS AND RESULTS

A. CNN for camera relocalisation

In this section we study the relocalisation performance

depending on the input type where we use a fixed architecture

while the nature of the input varies. For ease, we use a fast

implementation; more specifically, the VGG-F architecture is

tested with pre-trained weights optimized for object detection

in the ImageNet dataset [31] as well as with randomly

initialised weights, and we evaluated them in the TUM’s long

household and office sequence [35], as no significant differ-

ence between architectures has been observed in this scene

and therefore the difference in performance is attributable to

the difference in the input.

First, the response to an RGB input can be seen in Figure

7, where the red line indicates the training sequence and the

green line the test one – results show a relocalisation mean

error of 0.572 meters using pre-trained weights (Figure 7a),

and 0.867 meters when random weights were used (Figure

7b), where the difference in performance is attributable to

the filters initialisation.

Then, we evaluate other sensor inputs with a different

nature than RGB data, e.g. Figure 7c shows the relocalisation

performance for a dense point cloud of 3D points. The CNN

weights were randomly initialized, as pre-trained CNNs are

more common for RGB than depth or spatial data.

Table I shows the relocalisation mean error for all different

inputs after 1000 epochs. Again, the pre-trained CNN on

RGB information seems to outperform the others; however,

with exception of the pre-trained cases, there is not a

significant difference among the distinct input data, and this

is attributable to the lack of training samples. We also can

observe that, when combined information layers are used, the

(a) (b) (c)

Fig. 7: Relocalisation performance in the TUM sequence [35]

and a) an RGB input with a pre-trained CNN in the ImageNet

dataset [31], b) an RGB input and a randomly initialized

CNN, and c) a point cloud of 3D points input. Red line

indicates the training trajectory while the green line is the

testing one. Blue points are the neural network’s output.

performance decreases, what might be due to the difference

in the input nature (color, depth, and spatial position). One

way to overcome it can be the use of parallel networks for

each input and then average the output, as in [11].

TABLE I: CNN-F relocalisation mean error [in meters] for

different inputs after 1000 epochs in the long office sequence

from the TUM dataset [35].

Relocalisation mean error
Input Position [m] Angle [◦]

Depth 1.768 ± 0.568 44.93 ± 32.78
Gray 0.832 ± 0.675 31.91 ± 42.13

Point Cloud 0.986 ± 0.834 39.14 ± 46.85
RGB 0.778 ± 0.675 27.39 ± 41.43

Pre-trained RGB 0.465 ± 0.447 22.16 ± 40.91

RGB+Depth 0.863 ± 0.730 28.68 ± 41.67
RGB+Point Cloud 2.330 ± 0.494 79.63± 24.39

B. Multiple trajectories learning

To test the relocalisation performance with respect to the

number of training sequences, and hence the neural network

capability for map representation and compression, we use

the Microsoft’s 7-Scenes dataset ([38], [36]), as shown in

Figure 8; this dataset consists of several trajectories taken

by different persons moving around the same environment.

Training, validation and testing sequences are indicated in

the dataset itself.

(a) (b) (c) (d)

Fig. 8: Typical views from the Red Kitchen sequence in the

7-Scenes dataset [38].

Similar to the previous section, we evaluate the VGG-F

architecture with all different input data and compared their

response against PoseNet [18]; results are shown in Table IV.

Although RGB error is the lowest again, in this case, where

more training data per set is present, similar performances

(within the variance error) are found among different data
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TABLE II: Relocalisation mean error [in meters] for different architectures in several datasets given an RGB input.

PoseNet TUM 7Scenes
St Marys Church Long Office Pumpkin Red Kitchen Office

VGG-F 8.061 ± 6.193 0.541 ± 0.342 0.575 ± 0.278 0.616 ± 0.430 0.478 ± 0.258
VGG-M 8.282 ± 6.489 0.554 ± 0.384 0.606 ± 0.299 0.590 ± 0.453 0.489 ± 0.276
VGG-S 8.784 ± 6.694 0.544 ± 0.359 0.608 ± 0.315 0.628 ± 0.454 0.521 ± 0.302
VGG-16 4.671 ± 4.419 0.468 ± 0.367 0.448 ± 0.272 0.483 ± 0.352 0.345 ± 0.197
VGG-19 4.760 ± 4.620 0.470 ± 0.362 0.446 ± 0.264 0.471 ± 0.372 0.350 ± 0.217

PoseNet [18] 2.65 NA 0.47 0.59 0.48
SCoRe Forest [36] NA NA 0.04 0.04 0.04
ORB-SLAM2 [37] NA 0.01 NA NA NA

TABLE III: Relocalisation mean error [in degrees] for different architectures in several datasets and an RGB input.

PoseNet TUM 7Scenes
St Marys Church Long Office Pumpkin Red Kitchen Office

VGG-F 13.25 ± 15.14 25.63 ± 44.68 9.67 ± 6.89 10.67 ± 9.24 10.66 ± 7.90
VGG-M 12.97 ± 16.57 24.72 ± 39.82 9.04 ± 6.79 10.82 ± 8.68 11.07 ± 7.71
VGG-S 14.18 ± 19.30 25.99 ± 41.96 9.72 ± 8.39 11.14 ± 11.82 11.76 ± 8.41
VGG-16 9.84 ± 16.59 28.96 ± 43.46 9.59 ± 7.08 8.45 ± 7.75 8.35 ± 7.10
VGG-19 10.41 ± 17.40 25.68 ± 42.19 8.88 ± 7.41 8.10 ± 7.57 9.10 ± 8.27

PoseNet [18] 4.24 NA 4.21 4.32 3.84
SCoRe Forest [36] NA NA 0.68 0.76 0.78
ORB-SLAM2 [37] NA NA NA NA NA

types. Therefore, without lost of generality, for the rest of

the section we will use only RGB-only data.

Additionally, from Table IV we observe that, in the case

of RGB data, the VGG-F (8 layers) behaves as good as

PoseNet, a 23 layers and more complex neural network, with

a relocalisation mean error of 0.559 meters in the former and

0.59 meters in the latter, and therefore a compression in the

number of layers is achieved. It remains an open problem

the task of designing customized CNN map representation

by systematically modifying the neural network architecture

itself.

TABLE IV: Relocalisation mean error [in meters] using

VGG-F for different inputs after 1000 epochs in the Red

Kitchen sequence from the 7-Scenes dataset[38]. PoseNet

mean error is indicated in italics, as reported in [18].

Relocalisation mean error
Input Position [m] Angle [◦]

Depth 1.261 ± 0.382 20.24 ± 12.21
Gray 0.747 ± 0.493 12.37 ± 11.12

Point Cloud 0.740 ± 0.666 14.11 ± 13.94
RGB 0.559 ± 0.417 8.57 ± 7.86

PoseNet (RGB) 0.59 4.32

RGB+Depth 0.704 ± 0.538 11.77 ± 11.22
RGB+Point Cloud 0.640 ± 0.661 12.12 ± 13.92

The different architectures evaluated in this work are

presented in Table V. As a reference, it is presented SCoRe

Forest [36], a regression forest trained for pixel to 3D point

correspondence prediction – the authors used 5 trees with

500 images per tree and 5000 example pixels per image. It

is also presented ORB-SLAM2 [37], where a map with 16k

features was generated in the TUM’s long office scene [35].

TABLE V: Relocalisation mean error [in degrees] for dif-

ferent architectures in several datasets. PoseNet has fewer

parameters in a more complex architecture (parameter esti-

mation based on the GoogLeNet architecture [29]).

Model Parameters Layers

VGG-F 61M 8
VGG-M 100M 8
VGG-S 100M 8
VGG-16 138M 16
VGG-19 140M 19

PoseNet [18] 7M 23
SCoRe Forest [36] 12.5M NA
ORB-SLAM2 [37] 16k NA

Table II and Table III present a summary of the relocali-

sation response in position and orientation, respectively, for

the best combinations in each architecture using different

datasets and an RGB input; again, from an expected pose

p = [x, q] and the CNN response p̂ = [x̂, q̂], the error

in position is given by ep = ‖x − x̂‖, while the error in

orientation is given by ea = cos−1(< q, q̂ >). These results

confirm that, when enough training data is available, there

is not significant difference in performance among short and

long CNN architectures and, therefore, they may be used

alike. In addition, it is observed that, with a relatively small

regression map (12M in the SCoRe Forest), it is possible

to obtain a high accuracy – as a CNN can approximate any

function, it remains an open question how to find the best
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CNN architecture that approximate those results.

Furthermore, in traditional mapping techniques, the map

usually increases when new views are added; instead, when

using a CNN map representation, map information increases

while maintaining a neural network of constant size by re-

training it when new information is added.

We use the Red Kitchen, Office and Pumpkin sequences in

the Microsoft’s 7-Scenes dataset to test the CNN saturation

point as follows. One of the trajectories is left out for testing,

and the CNN is gradually trained by adding one remaining

sequence at a time. Figure 9 shows that while increasing

the number of trajectories, precision also increases but, by

construction, the size of the CNN remains the same, as

expected. Similarly, Figure 10, Figure 11, and Figure 12

show the performance in this incremental setup for short and

long architectures; no significant difference in relocalisation

performance between CNN architectures is observed, and

therefore the use of compact CNN map representation in

such scenarios is possible.

Nevertheless, an asymptotic behaviour has not been

reached after using all the training sequences, indicating

that the neural network is not saturated and suggesting

that more trajectories can still be added, improving the

performance. While compact, then, this map representation is

also constant-size when new information is added. As stated

before, compression comes in the sense of finding the small-

est neural network architecture with that still performs well

in the relocalisation problem. On the other hand, compression

also comes in the sense that the map information increases

when new information is received without increasing the map

representation size given by a constant-size CNN architec-

ture.
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Fig. 9: Relocalisation mean error in several scenes from the

7-Scenes dataset [38] with respect to the number of training

trajectories (one sequence is fixed for testing and the remain-

ing are used for training; dotted lines indicates a different test

sequence). The VGG-F is utilized for evaluation. While the

number of training trajectories increases, the error decreases

but the neural network size remains the same (the training

only affects the weights).

Figure 13 shows some outputs for the Red Kitchen se-

quence where the relocalisation improves as more trajectories

are used using the VGG-F fast architecture. There, it is

also observed how the relocated cameras (blue points) are
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Fig. 10: Relocalisation mean error in the Pumpkin dataset

[38] using several CNN architectures with respect to the

number of sequences in the training process, except for

one sequence selected for testing. No significant difference

in the performance between the short (in particular VGG-

F) and long architectures is observed and therefore short

architectures can be used without sacrificing performance.
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Fig. 11: Relocalisation mean error in the Red Kitchen dataset

[38] as in Figure 10.

closer to the test sequence (green line) when more training

sequences are present (red line).

VI. CONCLUSIONS

We presented a first approach toward CNN map repre-

sentation and compression for camera relocalisation. The

response to different inputs and to different trajectories was

studied. We first shown that for these kind of models, when

few training data (some thousands samples) and training

from scratch, the RGB images present the best performance

compared with other types of data, as depth or 3D point

clouds. Then, we presented the idea of map compression as

the task of finding optimal CNN architectures where different

architectures were evaluated: VGG-F, VGG-M, and VGG-S,

all with 8 layers and different orders of complexity, VGG-

16 (16 layers), and VGG-19 (19 layers). We observed that,

when the amount of training data is reduced, the architec-

ture plays a crucial role in the relocalisation performance;

however, with a representative training set, the short and

long architectures perform similarly. None o those archi-

tectures outperforms state-of-the-art techniques (e.g. ORB-

SLAM); however, regression techniques like SCoRe Forests
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Fig. 12: Relocalisation mean error in the Office dataset [38]

as in Figure 10 and Figure 11.

(a) (b) (c) (d)

Fig. 13: Relocalisation performance for the Red Kitchen

sequence in the Microsoft-s 7-Scenes dataset [38] after

training with a) two, b) five, c) eight, and d) eleven sequences

using the VGG-F. Red lines indicate the training sequences

and the green line is the test one; blue points are the output

of the system.

show promising results for map representations as regression

models.

On the other hand, we perform a study on the relocali-

sation performance with respect to the number of training

sequences. We observed that the performance increases with

the number of training sequences, as expected. However, in

the context of map representation through neural networks,

it means that the map accuracy can be improved without in-

creasing the map size but only by adjusting its weights. This

is important when a fixed amount of memory is available to

store the map in the mapping and navigation process.

For future work we note that more complex relocalisation

such as semantic or topological relocalisation were not

explored here. One potential direction encouraged by these

results is to train simpler networks for object recognition

with labeled datasets, and use a second network that accepts

semantic information as input for relocalisation. This kind of

multi-network systems, where two complex systems interact

to perform a single task are of interest to expand on the

current work.
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