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Towards CNN map representation and compression for camera
relocalisation

Luis Contreras' and Walterio Mayol-Cuevas

Abstract— This paper presents a study on the use of Con-
volutional Neural Networks for camera relocalisation and its
application to map compression. We follow state of the art visual
relocalisation results and evaluate the response to different
data inputs. We use a CNN map representation and introduce
the notion of map compression under this paradigm by using
smaller CNN architectures without sacrificing relocalisation
performance. We evaluate this approach in a series of publicly
available datasets over a number of CNN architectures with
different sizes, both in complexity and number of layers. This
formulation allows us to improve relocalisation accuracy by in-
creasing the number of training trajectories while maintaining
a constant-size CNN.

I. INTRODUCTION

Following our recent work on point cloud compression
mapping via feature filtering in [1] and [2], we aim to
generate compact map representations useful for camera re-
localisation through compact Convolutional Neural Networks
(CNNs). This effort is motivated by the end-to-end approach
of CNNs and in order to extend such to map compression.
Overall, having a minimal map representation that enables
later use is a meaningful question that underpins many
applications for moving agents. In this work, we specifically
explore a neural network architecture tested for the relocal-
isation task; we study the response of such architecture to
different inputs — e.g. color and depth images —, and the
relocalisation performance of pre-trained neural networks in
different tasks.

Biologically inspired visual models have been proposed
for a while [3], [4]. How humans improve learning after
multiple training of the same view and how they filter useful
information have also been an active field of study. One
widely accepted theory of the human visual system suggests
that a number of brain layers sequentially interact from
the signal stimulus to the abstract concept [S]. Under this
paradigm, the first layers — connected directly to the input
signal — are a series of specialized filters that extract very
specific features, while deeper layers infer more complex
information by combining these features.

Finally, overfitting a neural network by excessive training
with the same dataset is a well known issue; rather, here we
study how the accuracy improves by revisiting the same area
several times introducing new views to the dataset.

*This work was partially supported by CONACYT and the Secretaria de
Educacion Publica, Mexico

Department of Computer Science, University of Bristol, United Kingdom

lecslact@my.bristol.ac.uk

2wmayol@cs.bris.ac.uk

405

2

This paper is organized as follows. In Section II we discuss
work related to convolutional neural networks and camera
pose. Then, Section III introduces the notion of CNN map
representation and compression. The CNN architectures used
in the relocalisation task are then introduced in Section IV,
where we describe their architecture. Experimental results
are presented in Section V. Finally, we outline our discussion
and conclusions.

II. RELATED WORK

Even though neural networks are not a novel concept, due
to the increase in computational power, their popularity has
grown in recent years [6] [7]. Related to map compression,
dimensionality reduction through neural networks was first
discussed in [8]. In [9] an evaluation to up-to-date data en-
coding algorithms for object recognition was presented, and
it was extended in [10] to introduce the use of Convolutional
Neural Networks for the same task.

[11] introduced the idea of egomotion in CNN training
by concatenating the output of two parallel neural networks
with two different views of the same image; at the end, this
architecture learns valuable features independent of the point
of view.

In [12], the authors concluded that sophisticated archi-
tectures compensate for lack of training. [13] explore this
idea for single view depth estimation where they present a
stereopsis based auto-encoder that uses few instances on the
KITTI dataset. Then, [14], [15], and [16] continued studying
the use of elaborated CNN architectures for depth estimation.

Moving from depth to pose estimation was the next
logical step. One of the first 6D camera pose regressors
was presented in [17] via a general regression NN (GRNN)
with synthetic poses. More recently, PoseNet is presented
in [18], where they regress the camera pose using a CNN
model. In the same sense, [19] presented VidLoc, where they
improve PoseNet results in offline video sequences by adding
a biderctional RNN that takes advantage of the temporal
information in the camera pose problem. This idea is also
explored in [20] for image matching via training a CNN for
frame interpolation through video sequences.

III. MAP REPRESENTATION AS A REGRESSION
FUNCTION

From a human observer point of view, it is common to
think of spatial relationships among elements in space to
build maps; for this reason, metric, symbolic, and topological
are widely used map representations (such as probabilistic
[21], topological [22], and metric and topological [23] map



representations). However, other less intuitive map represen-
tation have been proposed — e.g. [24] defines a map as a
collection of images and uses image batch matching to find
the current position in the map.

Overall, it can be argued that the map representation needs
not conform to a single representation type, and that the task
and other constraints can lead to different manners in which
a map can be represented. Ultimately, for a robotic agent,
maps are likely built to be explored or, more generally, re-
explored. Thus, it is highlighted once more that relocalisation
is a good measure of map effectiveness. In this context, the
actual map representation used is less relevant as long as it
allows relocalisation in a specific scene or task; therefore, we
propose a mapping process based on Convolutional Neural
Network, or CNN, to address the camera relocalisation
problem.

A CNN can be considered as a filter bank where the
filters” weights are such that they minimize the error between
an expected output and the system response to a given
input. Figure 1 shows the elements from one layer to the
next in a typical CNN architecture — a more detailed CNN
implementation can be found in specialized works such as
[25] and [26]. From the figure, for a given input / and a
series of k filters fy, it is generated an output fk =1 x* f,
where * represents the convolution operator (hence, this layer
is also called convolutional layer), where the filters fj can
be initialized randomly or with pre-trained weights in a
different task. It is important to notice the direct relationship
between the input channels and the filters’ depth among
consecutive layers; it makes possible to work with different
n-dimensional inputs just by adjusting the first convolutional
layer depth.

n dimensional filter
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Fig. 1: Convolutional Neural Network (CNN) elements. It
consist of an input I, a series of filters fi, and its associated
output fk as a result of the convolution I * fj. The filters’
depth n depends on the number of input channels.

As aresult, in this work we represent a map as a regression
function p = cnn(I), where each element of the population
is formed by an input I and its associated output p (e.g.
an RGB image and the 6-DoF camera pose, respectively).
The parameters in the regressor cnn are optimised from a
population sample; the more representative the sample, the
more accurate the model [27].
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A. CON-POCO: CNN Map Compression

The notion of compression using a regression function
as a map representation is introduced as follows. First, a
population sample is defined as a collection of elements
(I,p) that represents a sensor’s travelled trajectory and,
further, this collection can be divided in training and testing
sets. From the training set, a regressor p enn(l) is
proposed such that it minimises the error |p — p| over the
test set.

This regressor, once defined, will have constant size,
and should improve its performance while increasing the
training set size (e.g. by generating more training trajectories)
without increasing the regressor size itself. The compact
map representation under the CNN paradigm is then stated
as the problem of finding an optimal model cnn(I) that
keep minimum relocalisation error values given a population
sample.

IV. THE RELOCALISATION CNN

To evaluate the CNN map representation in the relocali-
sation task, we test several CNN architectures of the form
p = cnn(l), where I is an input image and the expected
output is a 6-DoF pose p = [z,q], with = as the spatial
position and ¢ as the orientation in quaternion form. We use
PoseNet loss function, as described in [18], that has the form:

loss(I) = || — x|2+ B

. q
G— —
llallll
where PoseNet is based on the GooglLeNet arquitecture
[28], and S is a scale factor. As a reference, GoogLeNet has
7 million parameters but with a more elaborated architecture
[29]; in contrast, in this work to evaluate the relocalisation
performance with respect to the CNN size, we only vary the
number of convolutional layers and no interaction among
them is introduced. Learning the external parameters in a
CNN is time consuming because there is not really an
optimal approach to this task; for this reason, the use of
generic representations has been proposed such as in [30],
where the models trained in one task can be used in another,
a process known as transfer learning. Thus, we tested several
architectures using a series of pre-trained models on the
ImageNet dataset [31] and implemented in the MatConvNet
platform [32], as detailed bellow.

First, we use a relatively small CNN architectures with
different complexities, as in [10], with eight layers: five
convolutional and three fully-connected. We use three im-
plementations: a fast architecture (VGG-F) with 61 million
parameters (considering an RGB input), where the first con-
volutional layer has a four pixel stride; a medium architecture
(VGG-M) and 100 million parameters, where a smaller stride
and a smaller filter size with a bigger depth are used in the
first convolutional layer, and bigger filters’ depths are used
in the remaining convolutional layers. Finally, we study a
slow architecture (VGG-S), with a similar architecture and
number of parameters as in the VGG-M, but with a smaller
stride in the second convolutional layer.



Moreover, we evaluated two long CNN architectures, as
in [33], one with 16 layers (13 convolutional and three fully
connected layers with 138 million parameters) or VGG-16,
and the other with 19 layers (16 convolutional and three fully
connected layers with a total of 144 million parameters),
referred as VGG-19. We introduce a couple of changes to
these networks as follows: the dimension in the first layer
depends on the input »; in addition, the final fully-connected
layer size changes to the pose vector length (i.e. from 4096
to 7).

To demonstrate the impact of smaller architectures in the
relocalisation problem, we evaluate their performance in the
St Marys Church sequence, a large scale outdoor scene [34],
with 1487 training and 530 testing frames, as shown in
Figure 2 and we only use RGB information as input, and pre-
processing the original input by cropping the central area and
resizing it, generating arrays of size 224x224. We compare
their performance against PoseNet, as reported in [18].

(a) (b)

Fig. 2: Typical views from the St Marys Church sequence
dataset [34].

The training process is described next. First, we use the
fast implementation (VGG-F) to find a valid range for the
hyper-parameters involved in the CNN response, namely
the batch size, the learning rate, and the weight decay.
Then, with this valid hyper-parameters range, we perform
a similar experiment using the proposed CNN architectures
for the relocalisation task in the same dataset (the St Marys
Church sequence) to find a valid hyper-parameters range
in all architectures. We evaluate twenty hyper-parameters
combination per architecture for 250 epochs.

Given the best hyper-parameters range from the process
described above (batch size of 30, weight decays of 5E-01,
and learning rates from 1E-06 to 1E-10), we perform an
evaluation of the relocalisation performance using smaller
CNN architectures than that in the original PoseNet. In
general, larger architectures present better performance; how-
ever, none of them outperforms the baseline, as described
bellow.

Figure 3 shows the error in position, defined as the
Euclidean distance between the expected position = and
the CNN response &, e, = ||z — Z||; here, the minimum
error obtained was 4.76 meters using the VGG-19 CNN
architecture (for comparison, PoseNet’s error is 2.65 meters).
Then, the smallest error in orientation — in this work, it
is given by the angle between the two quaternion vectors
eq = cos 1 (< q,4 >) —is 10.40°, also given by the VGG-19
CNN architecture, and again PoseNet (whose error is 4.24°)
outperforms in this scenario.

Given that a regression model performance increases with
the number of training samples, we perform a similar evalua-
tion in a larger dataset to assess their effect in the CNN map

407

* VGG-F * VGG-M VGG-S
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Relocalisation mean error [meters]

Fig. 3: Relocalisation performance to different CNN archi-
tectures in the St Marys Church dataset [34], where five
parameter combinations were used per architecture during
500 training epochs: batch size of 30, weight decays of
5E-01, and learning rates from 1E-06 to 1E-10, where the
position error is defined as the Euclidean distance between
camera positions &, e, = | — &||. In dotted lines are the
results for PoseNet as in [18].
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VGG-16 + VGG-19 - -PoseNet
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Fig. 4: Orientation error, as the angle between quaternion
orientations e, = cos~ (< q,§ >). Parameters are as in to
Figure 3.

representation. In particular, we tested these implementations
in the TUM’s long household and office sequence [35] — a
texture and structure rich scene, with 21.5m in 87.09s (2585
frames), and a validation dataset with 2676 extra frames, as
can be seen in Figure 5.

(a)

(b)
Fig. 5: Some scenes in the TUM long office sequence [35].

Figure 6 shows the relocalisation performance for dif-
ferent CNN architectures — to discover the difference in
performance between architectures, we use the Euclidean
distance between pose vectors e = ||p — p|| as error metric,
where p = [z, ¢], and p is the estimated camera pose. It is
observed that, for some parameter combinations, there is no
significant difference in performance between short and long



architectures, and therefore short architectures (i.e. compact
map representations) may be used in the relocalisation task
in such cases.
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Fig. 6: Relocalisation response, as the distance between pose
vectors e = ||p — p||, among different CNN architectures
in the TUM long office dataset [35]; each point represents
a hyper-parameter combination with a batch size of 30,
weight decays of 5E-O1, and learning rates from 1E-06
to 1E-10. For the highlighted combinations, there is no
significant difference in the performance among short and
long architectures in this dataset.

V. EXPERIMENTS AND RESULTS
A. CNN for camera relocalisation

In this section we study the relocalisation performance
depending on the input type where we use a fixed architecture
while the nature of the input varies. For ease, we use a fast
implementation; more specifically, the VGG-F architecture is
tested with pre-trained weights optimized for object detection
in the ImageNet dataset [31] as well as with randomly
initialised weights, and we evaluated them in the TUM’s long
household and office sequence [35], as no significant differ-
ence between architectures has been observed in this scene
and therefore the difference in performance is attributable to
the difference in the input.

First, the response to an RGB input can be seen in Figure
7, where the red line indicates the training sequence and the
green line the test one — results show a relocalisation mean
error of 0.572 meters using pre-trained weights (Figure 7a),
and 0.867 meters when random weights were used (Figure
7b), where the difference in performance is attributable to
the filters initialisation.

Then, we evaluate other sensor inputs with a different
nature than RGB data, e.g. Figure 7c shows the relocalisation
performance for a dense point cloud of 3D points. The CNN
weights were randomly initialized, as pre-trained CNNs are
more common for RGB than depth or spatial data.

Table I shows the relocalisation mean error for all different
inputs after 1000 epochs. Again, the pre-trained CNN on
RGB information seems to outperform the others; however,
with exception of the pre-trained cases, there is not a
significant difference among the distinct input data, and this
is attributable to the lack of training samples. We also can
observe that, when combined information layers are used, the

408

Fig. 7: Relocalisation performance in the TUM sequence [35]
and a) an RGB input with a pre-trained CNN in the ImageNet
dataset [31], b) an RGB input and a randomly initialized
CNN, and c) a point cloud of 3D points input. Red line
indicates the training trajectory while the green line is the
testing one. Blue points are the neural network’s output.

performance decreases, what might be due to the difference
in the input nature (color, depth, and spatial position). One
way to overcome it can be the use of parallel networks for
each input and then average the output, as in [11].

TABLE I. CNN-F relocalisation mean error [in meters] for
different inputs after 1000 epochs in the long office sequence
from the TUM dataset [35].

Relocalisation mean error

Input Position [m] Angle [°]
Depth 1.768 4+ 0.568 | 44.93 + 32.78
Gray 0.832 £+ 0.675 | 31.91 £ 42.13
Point Cloud 0.986 + 0.834 | 39.14 + 46.85
RGB 0.778 + 0.675 | 27.39 £+ 41.43
Pre-trained RGB | 0.465 + 0.447 | 22.16 4+ 40.91
RGB+Depth 0.863 £+ 0.730 | 28.68 £ 41.67
RGB+Point Cloud | 2.330 4 0.494 79.63+ 24.39

B. Multiple trajectories learning

To test the relocalisation performance with respect to the
number of training sequences, and hence the neural network
capability for map representation and compression, we use
the Microsoft’s 7-Scenes dataset ([38], [36]), as shown in
Figure 8; this dataset consists of several trajectories taken
by different persons moving around the same environment.
Training, validation and testing sequences are indicated in
the dataset itself.

g b
A
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(a) (d

Fig. 8: Typical views from the Red Kitchen sequence in the
7-Scenes dataset [38].

Similar to the previous section, we evaluate the VGG-F
architecture with all different input data and compared their
response against PoseNet [18]; results are shown in Table IV.
Although RGB error is the lowest again, in this case, where
more training data per set is present, similar performances
(within the variance error) are found among different data



TABLE II: Relocalisation mean error [in meters] for different architectures in several datasets given an RGB input.

PoseNet TUM 7Scenes
St Marys Church Long Office Pumpkin Red Kitchen Office
VGG-F 8.061 £ 6.193 0.541 4+ 0.342 | 0.575 £ 0.278 | 0.616 £ 0.430 | 0.478 £+ 0.258
VGG-M 8.282 + 6.489 0.554 £ 0.384 | 0.606 £ 0.299 | 0.590 £ 0.453 | 0.489 £ 0.276
VGG-S 8.784 £ 6.694 0.544 4+ 0.359 | 0.608 £ 0.315 | 0.628 £ 0.454 | 0.521 % 0.302
VGG-16 4.671 + 4.419 0.468 4+ 0.367 | 0.448 £ 0.272 | 0.483 £ 0.352 | 0.345 + 0.197
VGG-19 4.760 £ 4.620 0.470 £ 0.362 | 0.446 £ 0.264 | 0.471 £ 0.372 | 0.350 £ 0.217
PoseNet [18] 2.65 NA 0.47 0.59 0.48
SCoRe Forest [36] NA NA 0.04 0.04 0.04
ORB-SLAM?2 [37] NA 0.01 NA NA NA

TABLE III: Relocalisation mean error [in degrees] for different architectures in several datasets and an RGB input.

PoseNet TUM 7Scenes
St Marys Church Long Office Pumpkin Red Kitchen Office
VGG-F 13.25 + 15.14 25.63 + 44.68 | 9.67 £ 6.89 10.67 £ 9.24 10.66 + 7.90
VGG-M 12.97 + 16.57 2472 + 39.82 | 9.04 £ 6.79 10.82 + 8.68 11.07 £ 7.71
VGG-S 14.18 + 19.30 2599 + 4196 | 9.72 £ 839 | 11.14 £ 11.82 | 11.76 £ 8.41
VGG-16 9.84 + 16.59 28.96 4+ 43.46 | 9.59 £ 7.08 845 + 7.75 835 £ 7.10
VGG-19 10.41 4+ 17.40 25.68 4+ 42.19 | 8.88 & 7.41 8.10 + 7.57 9.10 £ 8.27
PoseNet [18] 4.24 NA 4.21 4.32 3.84
SCoRe Forest [36] NA NA 0.68 0.76 0.78
ORB-SLAM? [37] NA NA NA NA NA

types. Therefore, without lost of generality, for the rest of
the section we will use only RGB-only data.

Additionally, from Table IV we observe that, in the case
of RGB data, the VGG-F (8 layers) behaves as good as
PoseNet, a 23 layers and more complex neural network, with
a relocalisation mean error of 0.559 meters in the former and
0.59 meters in the latter, and therefore a compression in the

features was generated in the TUM’s long office scene [35].

TABLE V: Relocalisation mean error [in degrees] for dif-
ferent architectures in several datasets. PoseNet has fewer
parameters in a more complex architecture (parameter esti-
mation based on the GoogleNet architecture [29]).

number of layers is achieved. It remains an open problem Model Parameters | Layers
the task of designing customized CNN map representation VGG-F 61M 8
by systematically modifying the neural network architecture VGG-M 100M 8
itself. VGG-S 100M 8
VGG-16 138M 16
TABLE IV: Relocalisation mean error [in meters] using VGG-19 140M 19
VF}G-F for different inputs after 1000 epochs in the Red PoseNet [18] ™ 23
Kitchen sequence from.th.e 7—Scenes dataset[38]. PoseNet SCoRe Forest [36] 12.5M NA
mean error is indicated in italics, as reported in [18]. ORB-SLAM2 [37] 16k NA
Relocalisation mean error
Input Position [m] Angle [°] )
Depth 1261 £ 0332 | 2024 &+ 1201 Table II and Table III present a summary of the relocali-
Gray 0.747 4+ 0.493 | 12.37 + 11.12 sation response in position and orientation, respectively, for
Point Cloud 0.740 + 0.666 | 14.11 4+ 13.94 the best combinations in each architecture using different
RGB 0.559 + 0.417 | 8.57 + 7.86 datasets and an RGB input; again, from an expected pose
P ‘]félgetD(RGlf) 0 040':-?0 s3s | 11 4i21] - p = [z,q] and the CNN response p = [%,q], the error
RGB.+Paint Cloud 02240 + 0.661 12:3 + 13.92 in position is given by e, = ||z — &||, while the error in

The different architectures evaluated in this work are
presented in Table V. As a reference, it is presented SCoRe
Forest [36], a regression forest trained for pixel to 3D point
correspondence prediction — the authors used 5 trees with
500 images per tree and 5000 example pixels per image. It
is also presented ORB-SLAM?2 [37], where a map with 16k

orientation is given by e, = cos~!(< ¢, >). These results
confirm that, when enough training data is available, there
is not significant difference in performance among short and
long CNN architectures and, therefore, they may be used
alike. In addition, it is observed that, with a relatively small
regression map (12M in the SCoRe Forest), it is possible
to obtain a high accuracy — as a CNN can approximate any
function, it remains an open question how to find the best
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CNN architecture that approximate those results.

Furthermore, in traditional mapping techniques, the map
usually increases when new views are added; instead, when
using a CNN map representation, map information increases
while maintaining a neural network of constant size by re-
training it when new information is added.

We use the Red Kitchen, Office and Pumpkin sequences in
the Microsoft’s 7-Scenes dataset to test the CNN saturation
point as follows. One of the trajectories is left out for testing,
and the CNN is gradually trained by adding one remaining
sequence at a time. Figure 9 shows that while increasing
the number of trajectories, precision also increases but, by
construction, the size of the CNN remains the same, as
expected. Similarly, Figure 10, Figure 11, and Figure 12
show the performance in this incremental setup for short and
long architectures; no significant difference in relocalisation
performance between CNN architectures is observed, and
therefore the use of compact CNN map representation in
such scenarios is possible.

Nevertheless, an asymptotic behaviour has not been
reached after using all the training sequences, indicating
that the neural network is not saturated and suggesting
that more trajectories can still be added, improving the
performance. While compact, then, this map representation is
also constant-size when new information is added. As stated
before, compression comes in the sense of finding the small-
est neural network architecture with that still performs well
in the relocalisation problem. On the other hand, compression
also comes in the sense that the map information increases
when new information is received without increasing the map
representation size given by a constant-size CNN architec-
ture.

--Red Kitchen
--Office
~-Pumpkin

[
N n

Relocalisation mean error [m]
°
&

1
Sequences

Fig. 9: Relocalisation mean error in several scenes from the
7-Scenes dataset [38] with respect to the number of training
trajectories (one sequence is fixed for testing and the remain-
ing are used for training; dotted lines indicates a different test
sequence). The VGG-F is utilized for evaluation. While the
number of training trajectories increases, the error decreases
but the neural network size remains the same (the training
only affects the weights).

Figure 13 shows some outputs for the Red Kitchen se-
quence where the relocalisation improves as more trajectories
are used using the VGG-F fast architecture. There, it is
also observed how the relocated cameras (blue points) are
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Relocalisation mean error [m]
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--VGG-16

3
Number of training sequences

Fig. 10: Relocalisation mean error in the Pumpkin dataset
[38] using several CNN architectures with respect to the
number of sequences in the training process, except for
one sequence selected for testing. No significant difference
in the performance between the short (in particular VGG-
F) and long architectures is observed and therefore short
architectures can be used without sacrificing performance.

Red Kitchen
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Relocalisation mean error [m]
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-=-VGG-S
-VGG-19
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-=-VGG-16
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) 5 6 7
Number of training sequences

Fig. 11: Relocalisation mean error in the Red Kitchen dataset
[38] as in Figure 10.

closer to the test sequence (green line) when more training
sequences are present (red line).

VI. CONCLUSIONS

We presented a first approach toward CNN map repre-
sentation and compression for camera relocalisation. The
response to different inputs and to different trajectories was
studied. We first shown that for these kind of models, when
few training data (some thousands samples) and training
from scratch, the RGB images present the best performance
compared with other types of data, as depth or 3D point
clouds. Then, we presented the idea of map compression as
the task of finding optimal CNN architectures where different
architectures were evaluated: VGG-F, VGG-M, and VGG-S,
all with 8 layers and different orders of complexity, VGG-
16 (16 layers), and VGG-19 (19 layers). We observed that,
when the amount of training data is reduced, the architec-
ture plays a crucial role in the relocalisation performance;
however, with a representative training set, the short and
long architectures perform similarly. None o those archi-
tectures outperforms state-of-the-art techniques (e.g. ORB-
SLAM); however, regression techniques like SCoRe Forests
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Fig. 12: Relocalisation mean error in the Office dataset [38]
as in Figure 10 and Figure 11.

(a) (©) @)

Fig. 13: Relocalisation performance for the Red Kitchen
sequence in the Microsoft-s 7-Scenes dataset [38] after
training with a) two, b) five, c) eight, and d) eleven sequences
using the VGG-F. Red lines indicate the training sequences
and the green line is the test one; blue points are the output
of the system.

(b)

show promising results for map representations as regression
models.

On the other hand, we perform a study on the relocali-
sation performance with respect to the number of training
sequences. We observed that the performance increases with
the number of training sequences, as expected. However, in
the context of map representation through neural networks,
it means that the map accuracy can be improved without in-
creasing the map size but only by adjusting its weights. This
is important when a fixed amount of memory is available to
store the map in the mapping and navigation process.

For future work we note that more complex relocalisation
such as semantic or topological relocalisation were not
explored here. One potential direction encouraged by these
results is to train simpler networks for object recognition
with labeled datasets, and use a second network that accepts
semantic information as input for relocalisation. This kind of
multi-network systems, where two complex systems interact
to perform a single task are of interest to expand on the
current work.
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