
Geometric Consistency for Self-Supervised End-to-End Visual Odometry

Ganesh Iyer∗1, J. Krishna Murthy∗2*, Gunshi Gupta1, K. Madhava Krishna1, Liam Paull2

1 International Institute of Information Technology Hyderabad (India)
2 Montreal Institute of Learning Algorithms (MILA), Universite de Montreal

{giyer2309, krrish94, gunshigupta9}@gmail.com

Abstract

With the success of deep learning based approaches in

tackling challenging problems in computer vision, a wide

range of deep architectures have recently been proposed

for the task of visual odometry (VO) estimation. Most of

these proposed solutions rely on supervision, which requires

the acquisition of precise ground-truth camera pose infor-

mation, collected using expensive motion capture systems

or high-precision IMU/GPS sensor rigs. In this work, we

propose an unsupervised paradigm for deep visual odom-

etry learning. We show that using a noisy teacher, which

could be a standard VO pipeline, and by designing a loss

term that enforces geometric consistency of the trajectory,

we can train accurate deep models for VO that do not re-

quire ground-truth labels. We leverage geometry as a self-

supervisory signal and propose "Composite Transformation

Constraints (CTCs)", that automatically generate supervi-

sory signals for training and enforce geometric consistency

in the VO estimate. We also present a method of characteriz-

ing the uncertainty in VO estimates thus obtained. To evalu-

ate our VO pipeline, we present exhaustive ablation studies

that demonstrate the efficacy of end-to-end, self-supervised

methodologies to train deep models for monocular VO. We

show that leveraging concepts from geometry and incorpo-

rating them into the training of a recurrent neural network

results in performance competitive to supervised deep VO

methods.

1. Introduction

Visual odometry (VO) is the process of estimating the

ego-motion of a camera solely from a sequence of images it

captures. This capability forms the backbone of any system

that requires visual localization. Most solutions to the prob-

lems of visual odometry estimation and simultaneous local-

ization and mapping (simultaneously estimating camera tra-

jectory and building a representation of the world) rely on

*The first two authors contributed equally to this work. We thank

NVIDIA for donating a DGX-1 computer used in this work. This re-

search was enabled in part by support provided by Compute Canada

www.computecanada.ca

Figure 1. System overview: We leverage the observation that

compounded sequences of transformations over short timescales

should be equivalent to single transformations over longer

timescales. This allows us to create additional constraints, that

we refer to as "Composite Transformation Constraints", that can

be used as consistency enforcers and aid in training deep architec-

tures for VO without requiring ground-truth labels.

the use of feature matching/tracking or geometric methods

in combination with keyframe-based optimization or bun-

dle adjustment [4, 17]. One major challenge of such ap-

proaches is to design visual features that have good invari-

ance properties and can be reliably associated. In contrast,

deep learning methods learn feature representations instead

of handcrafting them. Consequently, they have been applied

to the problem of visual place recognition for SLAM (dis-

covering that we are in a previously visited place) [16] as

well as VO [1, 14, 15, 21, 24, 25, 26, 26].

Most learning-based approaches to VO fall into one of

the following categories:

• Supervised deep VO approaches assume the availabil-

ity of ground-truth information in the form of per-

frame camera pose in a global frame, usually gathered

using a motion-capture system or expensive IMU/GPS

sensor rigs [1, 12, 18, 21, 24, 25].

• Unsupervised deep VO approaches do not require

1380

www.computecanada.ca


ground-truth pose information, but leverage some al-

ternate visual information that can assist the learning

process, such as depth [8, 15], stereo images [7, 26],

or optical flow [14].

Most state-of-the-art deep approaches to VO employ

sequence-models, such as long-short term memory (LSTM)

units [9], to capture long term dependencies in camera mo-

tion [1, 15, 24, 25]. These models have been shown to

correct drift in the estimated trajectory that may have been

caused due to incorrect odometry estimates for a few frames

in the sequence. However, existing approaches (that do not

use depth information) lack tight consistency constraints

across time steps. They rely solely on the statefulness of

the LSTM model to bring about a weak smoothing effect.

We propose an unsupervised training scheme through

our proposed model, CTCNet, for the task of learning

VO estimation. We tackle the problem in a setting that

does not assume the availability of ground-truth odome-

try data. To this end, we use noisy odometry estimates

from a conventional VO pipeline (ORB-SLAM [17]) to

train a recurrent architecture that outputs the relative cam-

era pose transformation between frames. To compensate

for noisy estimates used in training, we leverage geome-

try as a self-supervisory signal, and define a set of Com-

posite Transformation Constraints (CTCs) across a series

of image frames. These constraints arise naturally from

the composition law for rigid-body transformations. Esti-

mated transforms over short timescales, when compounded,

must equal their counterparts that are computed (indepen-

dently) over longer timescales. Fig. 1 shows an example of

CTCs applied to an input image sequence comprising four

frames. One such constraint here is that compositions of

relative transforms between successive frames should equal

the transform between the first and the fourth frames. For

this to be meaningful however, we require that the longer

timescale estimate (i.e., between the first and the fourth

frames here) be computed independently.

In contrast to other works that estimate poses using deep

learning [12, 18, 25], our network directly regresses to se(3)
exponential coordinates, and our loss function is formu-

lated as an L2-norm over the coordinates. Furthermore, we

also describe covariance recovery for VO estimates from

our pipeline, using dropout [20] to perform approximate

Bayesian inference [11].

Our experiments on the 7-Scenes [6] dataset demonstrate

comparable, and in some cases, better performance com-

pared with supervised methods. We also evaluate several

variants of the proposed architecture and demonstrate the

flexibility of this training process. To the best of our knowl-

edge, this is the first approach to unsupervised VO estima-

tion that does not require depth prediction as an auxiliary

task, as is usually the case [15, 23, 26].

2. Related Work

Deep learning solutions for VO are a relatively recent

but quickly evolving subset of methods for estimating cam-

era ego-motion. While initial approaches relied on ground

truth poses for training, recent approaches also explore the

possibility of unsupervised training schemes.

2.1. Supervised Approaches

Numerous approaches [1, 14, 21, 24, 25] learn the task

of VO estimation using ground-truth data available in the

form of global-camera poses, recorded by high-precision

GPU+IMS rigs.

Konda et.al. [14] first proposed an autoencoder to learn

a latent representation of the optical flow between camera

frames jointly with the ego-motion estimation task. Kendall

et.al. [12] proposed a convolutional network based on the

GoogLeNet architecture for monocular camera relocaliza-

tion. Wang et.al. [25] further extend the idea to exploit long

term dependencies between monocular frames through a re-

current convolutional network.

Clark et.al. [1], assimilate pose information over win-

dows of sequential frames and their corresponding iner-

tial information using an SE(3) concatenation layer and

separately fuse visual and inertial streams to provide ro-

bust trajectory estimates. Ummenhofer et.al. [21] propose

’DeMoN’ for supervised joint estimation of depth, ego-

motion, surface normals and optical flow given two suc-

cessive views. They show that learning these multiple-tasks

jointly leads to better performance on each of the tasks com-

pared to scenarios where each task was learnt in a disjoint

fashion.

Peretroukhin et.al. [18] recently propose a different ap-

proach to supervised VO. Rather than predicting relative

transformations between pairs of frames, they train a CNN

that corrects estimates from an existing VO framework.

They use stereo pairs for training and rely on pose graph

relaxation to correct existing pose values obtained from

SVO [4].

However, the training of these networks is supervised

against ground truth and is therefore limited by the avail-

ability of such recorded ground truth information.

2.2. Unsupervised Approaches

Recently, a lot of work has been conducted towards the

estimation of depth in a scene, which can be used as a prior

to find relative camera pose between associated successive

image frames. Handa et.al. [8] in their library gvnn, in-

troduced the 3D spatial transformer. Operating on a depth

map along with the corresponding image, it finds the se(3)
warp ξ that transforms the camera coordinates of the current

frame to those of the next frame, such that when projected

back into the image space of the next frame, the photomet-

ric error between the resulting SE(3) warped image and

the actual next image is minimized. This work paved the

381



Figure 2. End-to-end architecture: An example of Composite Transformation Constraints (CTCs) being applied to 4 successive input

images. During training, two estimates are generated from the inputs: one for a sequential pairwise constraint and one for a CTC constraint.

At test time, each frame is only fed into the network once to receive the output pose from the SE(3) layer. Therefore, the system can run

in an online fashion and in real-time on a GPU. (In practice, when training, we use up to 18 frames in an input window and hence generate

multiple CTCs that are applied to frames in the window. Here we show only one CTC block to avoid clutter.)

way for self-supervised methods that don’t require ground

truth pose information. Another work along similar lines

by Zhou et.al. [26] learns both depth and pose from monoc-

ular frames, using a novel depth-based pipeline for recon-

structing successive frames, although it is unable to recover

depth in metric scale. Vijayanarasimhan et.al. [23] further

propose ’SfM-Net’ to jointly predict depth, segmentation,

optical flow, camera and rigid object motion. They pro-

pose both unsupervised and supervised variants based on

the availability of ground truth ego-motion or depth.

In a more recent work, Li et. al. [15] use stereo and

monocular geometric constraints to create a composite loss

function during training and use only monocular frames

for testing. In contrast, we use an LSTM based architec-

ture that exploits mutliple-views along with their associated

pose consistency constraints, while still using frames from

a single camera.

Furthermore, all these unsupervised approaches use

depth prediction as a convenient auxiliary task to aid in

learning. Our approach is orthogonal to these, in the sense

that we rely purely on geometric consistency and do not

need such auxiliary tasks for unsupervised learning of VO.

3. Learning VO without ground-truth labels

The central idea of this paper is to leverage geometric

consistency and use it as a proxy for ground-truth labels.

In this section, we describe composite transformation con-

straints in detail and present our network architecture, loss

function, and training details. We also briefly describe how

covariance recovery can be easily incorporated into the pro-

posed approach, without additional training overhead.

3.1. Composite Transformation Constraints

Composite transformation constraints are based on the

fundamental law of composition of rigid-body transforma-

tions. Simply put, if we have transformations between two

sets of frames A 7→ B and B 7→ C, then the transform from

A 7→ C is simply the concatenation of the two former trans-

forms. As a toy example (Fig. 2), given a sequential set of

frames F = (It, It+1, It+2, It+3) at time t, we train a neu-

ral network to predict the transforms: [T t+1
t , T t+2

t+1 , T
t+3

t+2 ].
Since we do not have access to ground-truth labels, we

cannot quantitatively evaluate the accuracy of the predicted

transforms. However, for geometrical consistency to hold,

we know that the following composite transformation con-

straints must be satisfied.

T t+1
t · T t+2

t+1 · T t+3

t+2 = T t+3
t

T t+1
t · T t+2

t+1 = T t+2
t

T t+2

t+1 · T t+3

t+2 = T t+3

t+1

(1)

The extent to which the above constraints are satisfied

382



is a measure of trajectory consistency. We have a convo-

lutional encoder that feeds into a recurrent neural network

as our deep architecture for VO estimation (details in Sec

3.2, see Fig. 2). We first feed all frames in F into this

network and estimate all successive transformations of the

form T i+1

i . This provides us with all the information re-

quired to evaluate the left-hand sides of the above con-

straints. To evaluate the right-hand sides, we estimate all

T i
j s (j 6= i) using only the convolutional encoder and feed-

ing it frames Ii and Ij .

As an example, for an image pair (It, It+2), the pre-

dicted transform T t+2
t must be equal to the product of trans-

forms T t+1
t and T t+2

t+1 , predicted sequentially for frames

(It, It+1, It+2). For larger input sequences, we can nat-

urally formulate many more such CTCs. All of them are

jointly optimized during the training phase.

Note that, although traditional LSTM-based architec-

tures (without CTCs) would suffice to provide smooth tra-

jectories by mitigating noise between intermediate trans-

forms (smooths them out so that they do not deviate much

from the neighboring odometry estimates), it does not en-

sure geometric consistency of the obtained estimates. The

composite transformation constraint is, therefore, essential

in bringing about consistency in the predicted sequential

transforms, such that the LSTM not only provides smooth

trajectory estimates but also estimates that are consistent

within the underlying geometry of the trajectory.

3.2. Network Architecture

Our network consists of three major components - a con-

volutional encoder, a recurrent unit, and a CTC block. Fig. 2

illustrates the proposed end-to-end architecture for unsuper-

vised VO.

3.2.1 Convolutional encoder

Our network follows a similar structure to FlowNetSimple

and VGG-11 [2, 19]. The network takes as input a pair of

RGB images, denoted It and It+1, stacked along their color

channels. We initialize our convolutional layers with the

pre-trained weights from VGG-111. Unlike VGG-11, our

input consists of two images stacked together as opposed

to a single image, we replicate and concatenate the weight

tensors from VGG-11 to initialize our first layer. The pre-

trained weights provide a good initial point for learning fea-

ture extraction. After this initial series of convolutions and

pooling, features are globally aggregated using a series of

strided convolutional layers. During the training process,

we continue fine-tuning our weights for the task of estimat-

ing se(3) transformation parameters.

The output of our network is a C−dimensional vector, V .

This vector V is provided as input to a fully connected layer

1We use a slightly different variant from the one in the original paper

[19]. Our variants use BatchNorm [10] before every nonlinearity.

Figure 3. Architectural specifics: Our network builds on the pop-

ular VGG-11 network and takes images It and It+1 that are re-

sized to 320x240 and then stacked along the RGB channels. Each

convolution layer is followed by a ReLU non-linearity. Then,

batch normalization and max-pooling are successively applied. Fi-

nally 2 layers of strided convolution are applied followed by a 1x1
convolution layer to produce a latent vector of length 1080 that is

used as an input to the LSTM unit. The LSTM has 1000 units in

its hidden state. A final fully-connected layer maps the output of

the LSTM to a 6-dimensional se(3) coordinate vector.

that regresses a 6-vector comprising transformation param-

eters ξ = (vT , ωT )T ∈ se(3) where v is the translational

velocity, and ω is the rotational velocity respectively.

3.2.2 Recurrent unit

The vector V from the convolutional encoder is also in-

put to a recurrent unit that maintains a hidden state. It re-

gresses the se(3) transformation parameters for each frame

in the input sequence. We use LSTM units as recurrent units

throughout this paper. We discuss the training methodology

in further detail in Sec. 3.5.

3.2.3 CTC block

The CTC block gathers outputs from the encoder and the

recurrent units and applies CTCs to them. It is built us-

ing various layers that perform lie-algebraic operations. We

briefly describe each layer in this block.

SE(3) Layers: The SE(3) layers are responsible for

mapping the estimated se(3) parameters into the corre-

sponding SE(3) transformation matrix and vice versa. A

3D rigid body transformation T ∈ SE(3) is a rotation R

and translation t in 3D space, and is defined as follows.

T =

(

R t

0 1

)

where R ∈ SO(3) and t ∈ R
3 (2)

We denote a local transformation between the camera

poses at times t and t+ 1 as T t+1
t . We use ξ = (vT ωT ) ∈

se(3) to define the lie-algebraic exponential coordinates of

the local transformation.

An element in se(3) can be mapped to one in SE(3)
by using the exponential map, which is simply the matrix

exponential over a linear combination of the generators of

383



the tangent-space at the identity element of the Lie group.

The exponential map can be inverted to obtain the logarithm

map from SE(3) to se(3). Our implementations of the

SE(3) layers use the exponential and logarithm maps and

their corresponding small-angle approximations presented

in [3].

CTC computation: The network has multiple CTC

blocks, where each such block is responsible for the com-

putation of one particular composition constraint. In effect,

a CTC block computes the constraint in the following man-

ner. It first obtains se(3) estimates for the left-hand side

(LHS) of the constraint from the recurrent block, maps them

to transformation matrices in SE(3), and composes (con-

catenates) all of them. Then, it obtains an independent se(3)
estimate for the right-hand side (RHS) of the constratint.

The LHS and RHS estimates are then passed to the se(3)
loss layer described below, which evaluates the constraint

and computes gradients.

3.3. Loss Functions

Our complete loss function consists of a CTC error term

and a regularization term. Our loss terms are generic, and

can be applied to supervised as well as unsupervised set-

tings.

CTC Loss: This loss is dictated by the composite trans-

formation constraints as described in Sec 3.1. It is com-

puted between a direct transformation Td predicted between

non-consecutive frames and a composite transformation Tc,

composed as a product of smaller sequential transforma-

tions resulting from the predictions for successive frames:

Lctc = ‖ξd − ξc‖
2

2
(3)

where ξd, ξc are the se(3) exponential coordinates for the

transforms Tc and Td, respectively2.

Regularization Term: While the unsupervised term Lctc

is useful for enforcing consistency, using the above term

alone could result in a degenerate solution where the net-

work can predict zeros for ξc, ξd. To prevent this collapse

to a trivial solution, we introduce a regularization loss term.

Specifically, we assume a prior on each of the transforms es-

timated by the network from a standard VO pipeline. Such

a prior aids in avoiding trivial solutions and is inexpensive

to obtain. For each transform ξ∗ predicted by either the con-

volutional encoder or the recurrent unit, we have a prior ξ̂∗
from a conventional visual odometry estimator, used as a

regularization term.

Lreg = ‖ξ∗ − ξ̂∗‖
2

2
(4)

2Since the 7scenes dataset has very little camera motion between

frames, this choice of loss function (L2 norm between exponential coor-

dinates) works here, but one may want to use the geodesic distance over

SE(3) for generality [3].

Again, it’s essential to note that this estimator can be very

noisy, and is used only in a supporting role to the CTC loss

term.

The overall loss function is a weighted sum of the CTC

loss and the regularization term. In the expression below,

α, β are scalar weights associated with each of the loss

terms.

Lfinal = αLctc + βLreg (5)

3.4. Covariance recovery

In VO, recovering the covariance of an estimate is very

important, as it can be efficiently exploited when recover-

ing global information using pose-graph optimization (e.g.,

in [17]). Kendall et al. [11] use dropout [20] as a means of

bayesian approximation to recover covariance from relocal-

ization estimates from a trained CNN.

Similarly, we use dropout at the penultimate fully con-

nected layer of the convolutional encoder as well as the re-

current blocks. At test time, instead of removing dropout

from the network, we retain dropout layers and generate K

predictions for each input pair of frames. While generating

each of these K estimates, we randomly drop a fraction γ

of the units of the penultimate fully connected layer, which

results in a different estimate in each pass. The hypothesis

is that, if the network is very confident of its estimates, then

the variance in the obtained samples must be low. We fit

a Gaussian density function to the K samples and use this

density for covariance recovery.

3.5. Training Details

For ease and flexibility during training, we divide our

training process into two stages: a pre-training phase and a

sequential training phase:

Pretraining phase: While we can train in an end-to-end

fashion, we consider the option of pretraining the convolu-

tional layers in order to provide structured and informative

latent features as input to the LSTM during sequential train-

ing. The pre-training phase consists of training the output of

the convolutional encoder against noisy VO estimates from

a traditional odometry estimation framework. In the case of

unsupervised training, when ground truth data may not be

available, we rely on the frame-to-frame transformation es-

timates provided by RGB-D ORB-SLAM [17]. While these

estimates are noisy, they provide a fair starting point for the

network to learn from.

Sequential training phase: The sequential training

phase consists of providing the network windows (se-

quences) of frame pairs as input.

For training the network we use the Adam optimizer

[13], with an initial learning rate of 10−4, and momentum

equal to 0.9. We decrease the learning rate by a factor 0.5
every few epochs. We train for a total of 40 epochs. During

the pre-training phase, we only use the regularization loss

384



Figure 4. Trajectory estimates on a sequence from the 7-Scenes test split. Top (left to right): Output trajectories are shown in red, against

ground-truth trajectories in blue. Bottom: se(3) estimates of relative poses. Each of the 6 se(3) coordinates is plotted independently. On

this sequence, CTCNet performs better than LSTMgt.

term. During sequential training, we start with sequences of

length 3 frame pairs, i.e. [It..It+3], and gradually increase

to 18 frame pairs. We use several composite transformation

constraints for each window, as well as regularization terms,

with initial coefficient values α = 1 and β = 1. We also

experiment with end-to-end training of the full network, us-

ing the same loss terms. To prevent over-fitting, we apply

a dropout of 0.7 at the penultimate fully connected layer of

the convolutional encoder and the recurrent unit.

4. Experiments and Results

In this section, we describe the experiments carried out

to analyze the efficacy of the proposed approach, and the

findings we made in the process. We begin by describing

the basic setup for various experiments, and then describe

several variants of deep architectures that were evaluated.

We then present qualitative, as well as quantitative compar-

isons and proceed to a discussion of further scope for work.

4.1. Dataset and Metrics

Dataset

Although most approaches [1, 14, 15, 18, 23, 24, 25, 26]

evaluate their approach on the KITTI [5] benchmark, the

camera in KITTI moves on the road plane and does not

exhibit unconstrained 6 DoF motion. Wang et. al. [24]

present results on a wide range of datasets, but their ap-

proach notably performs poorly when camera motion is un-

constrained. To provide baseline results for several deep

architecture on a challenging dataset, we conduct our ex-

periments on the Microsoft 7-Scenes [6] dataset, which is

increasingly being used to evaluate VO and/or relocaliza-

tion performance [12, 22]. The dataset consists of tracked

640× 480 resolution RGB camera frames collected using a

handheld Microsoft Kinect camera. Although depth infor-

mation is available, only the RGB images are used as input

to all network variants we consider during training as well

as testing.

The dataset consists of 7 scenes, with a total of 46 se-

quences comprising about 1000 frames each. We use the

dataset-provided train/test splits for all our experiments.

During the initial training phase, we often use frames that

are randomly separated between 1-5 time steps apart in the

same sequence. This allows for a wider range of transfor-

mations and allows for a higher number of training pairs.

Overall, we composed a total of 49152 image pairs for train-

ing, 25686 image pairs for validation, and 15983 image

385



Network Architecture Absolute Trajectory Error (ATE) (meters) se(3) error (L2-distance)

redkitchen-03 office-02 fire-04 redkitchen-03 office-02 fire-04

CNNgt 0.0274± 0.0080 0.1216± 0.0820 0.1421± 0.0436 0.0293 0.0364 0.0354
LSTMgt 0.0242± 0.0091 0.1119± 0.0327 0.1101± 0.0412 0.0257 0.0253 0.0291

CNNunsup 0.0402± 0.0121 0.1394± 0.1027 0.1707± 0.0647 0.0382 0.0401 0.0368
LSTMunsup 0.0392± 0.0121 0.1290± 0.0670 0.1700± 0.0513 0.0343 0.0400 0.0359

CNNaug 0.0787± 0.0562 0.1662± 0.0908 0.1675± 0.0833 0.0605 0.0772 0.0547
LSTMaug 0.0780± 0.0531 0.1318± 0.0613 0.1486± 0.0809 0.0352 0.0395 0.0345

ORB-SLAM 0.0326± 0.0140 0.1005± 0.0620 0.1057± 0.0515 0.0352 0.0426 0.0305

CTCNet 0.036± 0.0012 0.1226± 0.0183 0.12918± 0.0246 0.0286 0.0384 0.0338
Table 1. Ablation analysis of the proposed network architecture and variants. We evaluate the absolute trajectory error (ATE) (in meters).

We also evaluate the relative pose estimation error in se(3) exponential coordinates (L2-distance).

pairs (17 sequences) for testing.

Metrics

To compare the output trajectories of our approach with

ground-truth, we use the absolute translation error (ATE)

metric. Further, to evaluate the accuracy of relative pose es-

timation, we also analyze the L2-distance between the esti-

mated se(3) exponential coordinates and the corresponding

ground-truth se(3) vector.

4.2. Network Architectures Evaluated

We carry out extensive experiments on several variants

of deep network architectures (supervised, unsupervised,

stateless, stateful) for VO prediction, to analyze the bene-

fits and pitfalls offered by each. Here, we enumerate each

of the variants tested. The supervised variants are provided

ground-truth pose estimates for supervision, whereas the

unsupervised variants are trained without ground-truth pose

information.

• CNNgt: The convolutional encoder supervised using

ground-truth pose information.

• LSTMgt: The convolutional encoder with its output

fed to the recurrent unit.

• CNNunsup, LSTMunsup: Unsupervised variants of

CNNgt and LSTMgt, respectively.

• CNNaug , LSTMaug: Similar to CNNgt, and LSTMgt

respectively. However, instead of simply taking in

odometry estimates from ORB-SLAM [17], every time

an image pair and its corresponding odometry esimate

are drawn from a Gaussian distribution centered about

the ORB-SLAM estimate, to account for noisy esti-

mates.

• CTCNet: The proposed architecture that enforces

composite transformation constraints (CTCs).

4.3. Results

We evaluate all network variants on the test split of the

7-Scenes dataset and the analysis is presented in Table 4.

As one would expect, the networks trained against ground-

truth turned out to be the best-performing models. Under-

standably, the LSTM variants achieved better performance

compared to their convolutional counterparts, due to the ad-

ditional context they store in their hidden state.

It can, however, be seen that CTCNet performs on par

with supervised approaches, although it has been trained

only using noisy estimates from a VO pipeline. Moreover,

LSTM variants that were trained purely against the noisy

estimates (i.e., without using CTC) perform poorly. Data

augmentation / label noise shows a slight improvement in

ATE, as evident from the CNNaug and LSTMaug results.

In certain sequences, CTCNet achieves significantly lower

error compared to CNNgt and LSTMgt (Fig. 4). This makes

a strong case for using geometric consistency for unsuper-

vised learning, especially in tasks such as visual odometry

and SLAM.

4.3.1 Comparision with ORB-SLAM

From Table 4, we observe that CTCNet does better in

terms of relative pose estimation when compared to ORB-

SLAM and hence has a lower se(3) error (L2-distance met-

ric). However, ORB-SLAM does marginally better on ATE.

This suggests that CTCNet performs better locally, whereas

ORB-SLAM is better at a global level. Since ORB-SLAM

is using keyframes it is able to optimize over an entire se-

quence of images with a similar viewpoint no matter how

long it is. We believe this can be mitigated by training

CTCNet on longer window lengths (currently it takes in a

window of only 18 image pairs as input), but being able to

flexibly control this window size the way that model-based

Figure 5. Outlier detection: Upon covariance recovery, estimates

with covariance above a threshold are marked outliers (here shown

in blue).

386



Figure 6. Estimated trajectories: (Top) Estimated 3D trajectories from CTCNet and ORB-SLAM plotted againscat ground-truth. (Bottom)

2D projections of these trajectories onto the XZ-plane.

approaches are able to3 is not currently addressed in deep

VO approaches and forms an interesting avenue for future

work.

4.3.2 Uncertainty estimation

Fig. 5 illustrates the performance of the proposed covari-

ance recovery scheme. Using a dropout (with drop ratio

10%), we draw 10 estimates per input pair using the CNNgt

model. We plot the estimated relative se(3) coordinates

with respect to those from ground-truth transforms. Fig. 5

shows this plot along the dimension v2, i.e., translational

velocity along the Y-axis. If the covariance of a particular

estimate is very high (i.e., if the 10 estimates drawn have

their variance above a set threshold), that estimate is char-

acterized as an outlier (shown in blue). We see that the

network reasonably detects and characterizes several out-

liers. This piece of information is valuable, especially in

weighing these estimates when constructing a global rep-

resentation (using pose graph optimization, for instance).

Moreover, this covariance recovery need not be learned. It

suffices if dropout layers are present during training. Inves-

tigation of how the estimated uncertainty can be exploited

to suppress the effect of outliers (see Fig. 6) is deferred to

future work.

4.3.3 Generalization

We also evaluate CTCNet in scenarios that it has never

encountered during training. To do so, we train CTCNet

using only 4 scenes from the 7-Scenes dataset (chess, of-

fice, redkitchen, and stairs). We evaluate VO estimation

performance on a sequence from the fire scene and report

the obtained trajectory in Fig. 7. This sequence bears no

resemblance to the training data presented to CTCNet, ei-

ther during the pre-training phase or the sequential train-

3ORB-SLAM has this flexibility built-in, using keyframes. At a frame

rate of 30 fps, a window-size of 18 frames would mean that ORB-SLAM

has a very stable keyframe that boosts performance.

ing phase. However, it has been trained on very little data

(4 scenes); training on more should improve performance.

Moreover, CTCNet alleviates the need for hyperparame-

ter tuning, which is frequently required for traditional VO

pipelines such as ORB-SLAM [17].

Figure 7. Generalization to unseen data: CTCNet was evaluated

on a sequence that was in stark contrast to the kind of sequences it

had been presented with during training. Estimated 3D trajectory

plotted against ground-truth.

5. Conclusion

In this paper, we showcase a new end-to-end architecture

for self-supervised training to regress pose transformations

between monocular frame-pair sequences. We demonstrate

the use of a differentiable flexible composite constraint and

its application in both supervised and unsupervised settings.

Our method works well in the supervised setting with re-

duced ATE, when tested on indoor sequences. In the future,

we plan to extend the work to a full-fledged SLAM system.

We would also look to generate and utilize depth informa-

tion (RGB-D) of sequential scenes for dense reconstruction

and trajectory estimation.

387



References

[1] R. Clark, S. Wang, H. Wen, A. Markham, and N. Trigoni.

Vinet: Visual-inertial odometry as a sequence-to-sequence

learning problem. In Proceedings of the Thirty-First AAAI

Conference on Artificial Intelligence. AAAI, 2017. 1, 2, 6

[2] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazırbaş,

V. Golkov, P. v.d. Smagt, D. Cremers, and T. Brox. Flownet:

Learning optical flow with convolutional networks. In ICCV,

2015. 4

[3] E. Eade. Lie groups for 2d and 3d transformations. 5

[4] C. Forster, M. Pizzoli, and D. Scaramuzza. SVO: Fast semi-

direct monocular visual odometry. In IEEE International

Conference on Robotics and Automation (ICRA), 2014. 1,

2

[5] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-

tonomous driving? the kitti vision benchmark suite. In

CVPR, 2012. 6

[6] B. Glocker, S. Izadi, J. Shotton, and A. Criminisi. Real-

time rgb-d camera relocalization. International Symposium

on Mixed and Augmented Reality (ISMAR), 2013. 2, 6

[7] C. Godard, O. Mac Aodha, and G. J. Brostow. Unsupervised

monocular depth estimation with left-right consistency. In

CVPR, 2017. 2

[8] A. Handa, M. Bloesch, V. Pătrăucean, S. Stent, J. McCor-

mac, and A. Davison. gvnn: Neural network library for ge-

ometric computer vision. In ECCV Workshop on Geometry

Meets Deep Learning, 2016. 2

[9] S. Hochreiter and J. Schmidhuber. Long short-term memory,

1995. 2

[10] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, 2015. 4

[11] A. Kendall and R. Cipolla. Modelling uncertainty in deep

learning for camera relocalization. In Proceedings of the In-

ternational Conference on Robotics and Automation (ICRA),

2016. 2, 5

[12] A. Kendall, M. Grimes, and R. Cipolla. Posenet: A convo-

lutional network for real-time 6-dof camera relocalization.

ICCV, 2015. 1, 2, 6

[13] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. CoRR, 2014. 5

[14] K. Konda and R. Memisevic. Learning visual odometry with

a convolutional network. International Conference on Com-

puter Vision Theory and Applications, VISAPP, 2015. 1, 2,

6

[15] R. Li, S. Wang, Z. Long, and D. Gu. UnDeepVO: Monocu-

lar visual odometry through unsupervised deep learning. In

IEEE International Conference on Robotics and Automation

(ICRA), 2018. 1, 2, 3, 6

[16] S. Lowry, N. Sünderhauf, P. Newman, J. J. Leonard, D. Cox,

P. Corke, and M. J. Milford. Visual place recognition: A sur-

vey. IEEE Transactions on Robotics, 32(1):1–19, Feb 2016.

1

[17] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós. ORB-

SLAM: a versatile and accurate monocular SLAM system.

IEEE Transactions on Robotics, 2015. 1, 2, 5, 7, 8

[18] V. Peretroukhin and J. Kelly. Dpc-net: Deep pose correc-

tion for visual localization. IEEE Robotics and Automation

Letters (In Press), 2018. 1, 2, 6

[19] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 4

[20] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Dropout: A simple way to prevent neural

networks from overfitting. JMLR, 2014. 2, 5

[21] B. Ummenhofer, H. Zhou, J. Uhrig, N. Mayer, E. Ilg,

A. Dosovitskiy, and T. Brox. Demon: Depth and motion

network for learning monocular stereo. In CVPR, 2017. 1, 2

[22] A. Valada, N. Radwan, and W. Burgard. Deep auxiliary

learning for visual localization and odometry. In Proc. of the

IEEE Int. Conf. on Robotics & Automation (ICRA), 2018. 6

[23] S. Vijayanarasimhan, S. Ricco, C. Schmid, R. Sukthankar,

and K. Fragkiadaki. Sfm-net: Learning of structure and mo-

tion from video. CoRR, abs/1704.07804, 2017. 2, 3, 6

[24] S. Wang, R. Clark, H. Wen, and N. Trigoni. End-to-end,

sequence-to-sequence probabilistic visual odometry through

deep neural networks. The International Journal of Robotics

Research. 1, 2, 6

[25] S. Wang, R. Clark, H. Wen, and N. Trigoni. Deepvo: To-

wards end-to-end visual odometry with deep recurrent con-

volutional neural networks. IEEE International Conference

on Robotics and Automation (ICRA), 2017. 1, 2, 6

[26] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe. Unsu-

pervised learning of depth and ego-motion from video. In

CVPR, 2017. 1, 2, 3, 6

388


