
Mask-SLAM: Robust feature-based monocular SLAM

by masking using semantic segmentation

Masaya Kaneko Kazuya Iwami Toru Ogawa Toshihiko Yamasaki Kiyoharu Aizawa

The University of Tokyo

{kaneko, iwami, t ogawa, yamasaki, aizawa}@hal.t.u-tokyo.ac.jp

Abstract

In this paper, we propose a novel method that combines

monocular visual simultaneous localization and mapping

(vSLAM) and deep-learning-based semantic segmentation.

For stable operation, vSLAM requires feature points on

static objects. In conventional vSLAM, random sample con-

sensus (RANSAC) [5] is used to select those feature points.

However, if a major portion of the view is occupied by mov-

ing objects, many feature points become inappropriate and

RANSAC does not perform well. Based on our empirical

studies, feature points in the sky and on cars often cause

errors in vSLAM. We propose a new framework to exclude

feature points using a mask produced by semantic segmen-

tation. Excluding feature points in masked areas enables

vSLAM to stably estimate camera motion. We apply ORB-

SLAM [15] in our framework, which is a state-of-the-art

implementation of monocular vSLAM. For our experiments,

we created vSLAM evaluation datasets by using the CARLA

simulator [3] under various conditions. Compared to state-

of-the-art methods, our method can achieve significantly

higher accuracy.

1. Introduction

In order for machines to recognize the real world, camera

pose estimation is a crucial task that accurately estimates

where a machine is located in the real world.

Visual simultaneous localization and mapping (vSLAM)

is one of the most promising approaches to localization. It

is simple and requires only a single camera to capture im-

age sequences. Using a sequence of images, vSLAM is

not only able to perform estimation of camera location and

pose, but also reconstruct 3D scenes. Compared to other

sensors, such as LiDAR, vSLAM is much less costly and

can obtain a larger amount of data regarding surrounding

environments. However, vSLAM is not particularly robust.

In this paper, we focus on feature-based vSLAM using

the ORB-SLAM implementation by Mur-Artal et al. [15],

(a) Existing method (b) Proposed method

Figure 1: Difference in feature point extraction between

the existing method and proposed methods. By masking

regions of feature points, feature points become well dis-

tributed in the image without concentrating on regions that

are not suitable for vSLAM.

which operates relatively stably among monocular vSLAM

implementations [2, 10]. Feature-based vSLAM first ex-

tracts many feature points from an image, then compares

descriptors of each point between images in a sequence to

search for correspondences, and finally estimates the cam-

era pose from those correspondences. Feature-based meth-

ods are resistant to image distortion and can perform highly

accurate pose estimation for many kind of devices. How-

ever, these methods utilize only local information extracted

as feature points and are not able to discriminate between

feature points of stationary regions in the world coordi-

nate system. If feature points are in moving regions, vS-

LAM produces estimation errors. In order to select feature

points from stationary regions, random sample consensus

(RANSAC) [5] is typically used in feature-based vSLAM.

RANSAC is used to select the most reliable value from

many hypotheses. Hypotheses are computed from random

samples of a large number of correspondence pairs. vS-

LAM should exclude feature points in moving areas, which

likely contain incorrect pairs and can lead to errors. How-

ever, consider a case where most of the correspondence

pairs are incorrect. RANSAC is unable to select exclusively

correct pairs and vSLAM is unable to solve the problem cor-

rectly. In order to handle these situations that are unsuitable

for RANSAC, we use a mask obtained through semantic

segmentation based on deep neural networks (DNNs) [13].

1371



(a) Baseline method

(b) Proposed method

Figure 2: Difference in structure between baseline method and proposed method. In the proposed method, by masking

based on semantic segmentation result in the form of preliminary knowledge, we restrict the regions to extract feature points.

This makes it possible to reduce the number of incorrect matches among the correspondences selected by RANSAC [5] and

improve the overall performance of vSLAM.

Semantic segmentation accounts for global information in

an image and is complementary to feature-based vSLAM,

which utilizes only local information in an image.

This method facilitates flexible and highly accurate im-

age recognition that considers not only local, but also global

features of an image. Feature-based vSLAM using only lo-

cal information in an image implicitly assumes static areas,

which are strongly dependent on circumstances. However,

using semantic segmentation, which is one of the most ac-

tive research topics in deep learning, can remedy the issues

in feature-based vSLAM. This is accomplished by remov-

ing feature points in inappropriate regions using masks pro-

duced by semantic segmentation. The masks ensure that hy-

potheses do not concentrate on inappropriate regions, such

as moving objects.

We focus on videos captured from a moving vehicle in

our experiments. In our preliminary experiments, areas

whose feature points were incorrect often included pedes-

trians, vehicles, and the sky. In the most famous benchmark

dataset, called KITTI [7], conditions are too optimal and

there are very few inappropriate areas. In the real world,

there is extreme diversity in weather, moving objects (cars),

pedestrians, etc. Therefore, we decided to use a simulated

environment generated by the CARLA simulator [3] to eval-

uate our proposal. With the CARLA simulator, one can

freely move cars and change weather, and it’s possible to

create as much data as needed. We evaluated the effec-

tiveness of the proposed method using a large amount of

dataset obtained in a simulated environment as close to the

real world as possible.

The main contributions of this paper are as follows:

• We propose a method that can easily improve the per-

formance of monocular vSLAM by introducing deep-

learning-based semantic segmentation. Shortcomings

in the local information of vSLAM can be addressed

by introducing global information from semantic seg-

mentation.

• The performance achieved by the proposed method is

nearly the same as the performance achieved when tra-

ditional vSLAM operates ideally.

• We make use of a driving simulator to produce a num-

ber of environments that are not available in existing

datasets. Based on experiments using the simulated

video, the proposed method achieves significantly bet-

ter performance than the existing method.

2. Related work

There have been several attempts at solving the problem

of connecting deep learning with vSLAM or accomplish-

ing the function of conventional SLAM using deep learn-

ing. One of the most famous approaches is CNN-SLAM

[17], which uses depth values inferred by deep learning as

an initial solution for SLAM estimation. Recently, unsuper-

vised approaches have been proposed to estimate depth [6]

and egomotion [19], and perform 3D reconstruction [18].

These methods can learn only from tag-less (raw) movies

and their accuracy is poor when compared to existing vS-

LAM methods. We thought that a part of these method can

help improve existing vSLAM method. In particular the au-

thors of [19], introduced an “explainability mask,” which

is a mask for image regions areas that do not fit mainstream

motion-estimation techniques. However, their method is not

able to exclude regions of moving objects that occupy the

view because their training data did not contain such im-

ages. It is necessary to have preliminary knowledge regard-

ing which parts in an image tend to move and which parts

are stationary.

In our proposal, we make use of semantic segmentation

to improve vSLAM. Semantic segmentation is a method

that divides an image into regions of semantic categories,

such as people, cars, sky, etc. It is reasonable to combine

vSLAM and semantic segmentation because the former re-

lies on local information and the latter produces regional in-

372



Figure 3: General structure of vSLAM. vSLAM utilizes a

tracking thread that constantly estimates camera pose and

a mapping thread that stores the tracked feature points as a

3D map.

formation. These two types of information are complemen-

tary and their proper combination can improve the accuracy

of vSLAM.

3. Proposed method : Mask-SLAM

This section describes the proposed Mask-SLAM

method. Our model consists of constructing a mask from

an image using semantic segmentation and incorporating

that information into the existing vSLAM pipeline. This

pipeline is ilustrated in Fig. 2.

In the following sections, we describe the details of the

vSLAM pipeline and semantic segmentation.

3.1. Visual SLAM

Feature-based vSLAM typically consists of “localiza-

tion, that is tracking for camera pose estimation” and“map-

ping for reconstructing the surrounding 3D environment,”

where these two processes are executed simultaneously.

The detailed algorithm is presented in Fig. 3.

vSLAM extracts feature points from an image, obtains

corresponding pairs by comparing the descriptors of each

point, and estimates camera motion from the correspon-

dences. ORB-SLAM [15], which is a state-of-the-art im-

plementation of vSLAM, uses ORB feature points [16] that

can be extracted at high speed and compares these ORB

features to obtain correspondence points. ORB-SLAM uti-

lizes the strategy of obtaining a large number of correspon-

dence pairs and selecting reliable pairs from among them.

RANSAC [5] is the algorithm used for selecting the most

reliable correspondences.

RANSAC sequentially derives mathematical parameters

from data, including outliers. The RANSAC algorithm op-

erates as follows:

1. Randomly extract a sufficient number of samples from

the data.

2. Estimate a set of parameters to fit these samples. This

set of parameters is called hypothesis.

3. Apply the obtained hypotheses to all data other than

the extracted samples and compute the distances be-

tween the estimated parameters for each data sample.

4. Consider samples with small distances as inliers and

let the number of inliers represent the correctness of a

hypothesis.

5. The above operation is performed a number of times

and the hypothesis with the largest number of inliers is

adopted, while outlier data is excluded.

By implementing RANSAC as described above, one can ob-

tain a correct estimation result that is not influenced by out-

liers. In general, in vSLAM, RANSAC can find the most

correct pair from a large number of correspondences and

can derive an accurate camera pose.

However, there is a limit to the usefulness of this

method. vSLAM requires features from stationary objects

for RANSAC to be able to select reliable correspondences.

When the entire view is occupied by a moving object,

RANSAC cannot select reliable correspondences. In vS-

LAM, RANSAC is executed on every frame of input video

for estimation of the camera pose. If an area that is inappro-

priate for estimating camera pose appears for an extended

duration, the probability of continuous detection of inappro-

priate correspondence points as inliers is greatly increased.

This situation occurs frequently when utilizing vSLAM out-

doors.

Therefore, we propose the use of semantic segmentation

to compensate for the deficiencies of RANSAC. Semantic

segmentation is used to produce a mask to exclude regions

where correct correspondences are unlikely to be found.

Specifically, in the general vSLAM pipeline, at the stage

of detecting the feature points, the operation“do not detect

feature points in masked area” is added. By simply adding

this operation, it is possible to exclude most of the inaccu-

rate correspondences obtained, which significantly reduces

RANSAC error.

3.2. Semantic Segmentation

Semantic segmentation is the problem of assigning an

object class to each pixel. VOC2012 [4] and MSCOCO [14]

are representative datasets for semantic segmentaion. We

define objects to be masked as follows:

• Cars: moving objects that are not suitable for feature

points.

373



(a) Original (b) GT (c) Result

Figure 4: Example output results of DeepLab v2[1]. Origi-

nal image(4a), CARLA[3]’s GT(4b), DeepLab result(4c)

• Sky: this object is too far from the camera view, mean-

ing it is difficult to estimate an accurate 3D position for

this object.

Areas where the feature points should be detected from an

image are excluded in the mask. We used DeepLab v2 [1],

which can perform high-precision semantic segmentation,

for this study. DeepLab v2 utilizes a network with the fol-

lowing structure:

1. For an input image, deep convolutional neural net-

works output an object existence probability heat map.

2. Bi-linear interpolation is performed on the probability

heat map.

3. The final region segmentation results are outputted

based on boundary refinement using a conditional ran-

dom field (CRF) [11].

DeepLab v2 implements an atrous convolution, which can

reduce computation cost and perform convolution opera-

tions without reducing resolution. By inserting zeros into

the gaps between the pixels of the convolution filter and

enlarging it, the output result maintains a high resolution.

Additionally, in order to obtain information regarding ob-

jects of various sizes in the image, performance can be im-

proved by combining spatial pyramid pooling [12, 8], which

performs convolution in parallel on multiple scales, with

atrous convolution (atrous spatial pyramid pooling (ASPP)).

In Deeplab v2, by incorporating ASPP into an existing net-

work (VGGNet or ResNet), the creators were able to derive

a highly accurate probability heat map and refine the bound-

aries using a CRF [11].

In our experiment, we trained a DeepLab v2 based on

ResNet-101 from scratch using 30,000 images (800 × 600
pixels) created by the CARLA driving simulator CARLA

[3] (see Section 4.1). We used a single Tesla K80 GPU

for training the network. We constructed the training data

based on the experimental settings in Section 4. The dataset

is comprised of images captured from a moving car and the

Figure 5: An example of the visualization of a sequence

trajectory in our datasets (Town01, WetSunset)

semantic segmentation ground truth (GT) results (13 types

of labels). The semantic segmentation GT data originally

had 12 types of labels (“None,” “Buildings,” “Fences,”

“Other,” “Pedestrians,” “Pole,” “Roadlines,” “Roads,”

“Sidewalks,”“Vehicles,”“Walls,” and“Trafficlights”), but

we added a “Sky” label. We created the “Sky” label as

follows. We changed the labels for“None” to“Sky” for the

pixels labeled“None” in the GT of semantic segmentation

with the deepest depth values (1, 000[m]). The results from

DeepLab v2 are presented in Fig. 4.

“Cars” (moving objects) and “Sky” (distant area) are

objects that we empirically found to disturb the operation of

vSLAM. We outputted these two label areas as a mask and

implemented a process where feature points would not be

detected from these masked areas.

4. Experiments

4.1. Datasets

In order to demonstrate the effectiveness of the proposed

method, we used the CARLA driving simulator [3], which

can simulate various environments. Existing benchmarks,

such as KITTI, consider only limited circumstances where

RANSAC is unlikely to fail. However, because various en-

vironments appear in the real world, it is not sufficient to

evaluate a model using only the KITTI benchmarks. In this

experiment, we simulated various weather conditions and

environments with moving objects using CARLA to deter-

mine if the proposed method is effective under various con-

ditions. CARLA can change weather conditions flexibly

and can move cars automatically. CARLA is a driving sim-

ulator for automatic operation developed by Desovitskiy et

al. We acquired images from a moving car in two towns

(Town01, Town02) under 15 types of weather conditions

374



Table 1: Distribution of weather conditions in our datasets.

We randomly selected 11 weather conditions and excluded

four weather conditions that are difficult for vSLAM to

handle (MidRainyNoon, HardRainNoon, MidRainSunset,

HardRainSunset).

Weather Town01 Town02

Default 3 2

ClearNoon 3 5

CloudyNoon 4 4

WetNoon 8 6

WetCloudyNoon 1 9

MidRainyNoon 0 0

HardRainNoon 0 0

SoftRainNoon 3 2

ClearSunset 6 3

CloudySunset 4 2

WetSunset 7 7

WetCloudySunset 3 4

MidRainSunset 0 0

HardRainSunset 0 0

SoftRainSunset 8 6

Sum 50 50

Table 2: Experimental results of two evaluation metrics for

our datasets. We found that both metrics were improved by

our method.

MTR [%] MTE [m]

Baseline[15] 42.4 14.9

Ours 58.2 13.7

(CloudySunset, SoftRain, Clearnoon, etc). Additionally, we

acquired GT sensor data, such as GPS, LiDAR, semantic

and segmentation, which are not available in the real world.

For this experiment, we created datasets from 50 runs in

each of the two towns (total of 100 runs). Each run contains

1,000 images (800 × 600 pixels) captured at 15 fps. We

refer to the images (video) obtained in a run as a sequence.

The car was automatically driven using the autopilot mode

with a travel distance of 100-500 m for each sequence. We

also randomly chose weather conditions from 11 options.

We excluded four weather conditions under which ORB-

SLAM [15] cannot operate. The data distribution is listed

in Table 1. Additionally, an example of the visualization of

a sequence trajectory is presented in Fig. 5.

4.2. Evaluation metrics

In this section, we describe our evaluation metrics. We

estimated a trajectory 50 times for each baseline method

[15] and for our method for each sequence. We defined two

evaluation metrics for computing average values for each

(a) Tracking rate

(b) Trajectory error

Figure 6: Results of each evaluation metric for our datasets.

We sorted the data in ascending order of values relative to

the baseline method for visibility. Superior results were ob-

tained by our method.

data type.

• The evaluation value for a “sequence” is defined as

“the average value obtained by repeatedly deriving an

estimate of 50 trajectories for a sequence.”

• The evaluation value for the“entire sequence” is de-

fined as“the average value of the evaluation values for

each sequence.”

When examining the performance of vSLAM, it is com-

mon to measure the distance errors between the trajectory

estimated by vSLAM and the GT. However, in this exper-

iment, we focus on the overall improvement of vSLAM.

We define improvement as the proposed vSLAM operating

without problems when the original vSLAM loses its posi-

tion and halts its operation. We observed several cases in

which original vSLAM halted before completion because

of errors caused by cars or the sky.

Taking these ideas into consideration, we used the fol-

lowing two kinds of evaluation metrics:

• Mean Tracking Rate (MTR): This metric indicates

whether or not vSLAM tracks without losing its posi-

tion or halting operation on a per-sequence basis. If

tracking is successful, vSLAM outputs the estimation

375



(a) Video1, Baseline[15] (b) Video1, Ours
(c) Video1, Baseline[15] (d) Video1, Ours

(e) Video2, Baseline[15] (f) Video2, Ours
(g) Video2, Baseline[15] (h) Video2, Ours

Figure 7: Example results for the datasets. Video1 is an example result that was improved by excluding the sky area. Video2

is an example result that was improved by excluding moving objects. There are only a few feature points to be referred to by

existing SLAM (e). Immediately after this, existing SLAM stops its operation.

video 1 video 2

MTR[%] MTE[m] MTR[%] MTE[m]

Baseline[15] 20.0 5.0 4.0 36.8

Ours 74.0 1.0 22.0 5.5

Table 3: Comparison of average values of results for Video

1 and Video 2

result for the camera motion in each frame. We de-

fined a“Failed Tracking” as one that failed to obtain

an estimation result for more than 80 [%] of the 1,000

frames in a sequence. We output the success rate over

50 trials for a single sequence as the “Tracking Rate

[%].” Conversely, we defined a“Successful Tracking”

as one that succeeded in tracking more than 80 [%]

of the 1,000 frames. If improvement in an evaluation

value is observed, this indicates that the performance

of vSLAM is improved. Specifically, we formulated

the “Mean Tracking Rate [%]” for all trials in a se-

quence as follows:

MTR =
1

m

m=50∑

i=1

(TrackingRatei) (1)

For each sequence, m(= 50) results (“Tracking Rate

[%]”) from i = 1, ...,m = 50 are obtained and their

average value is the“Mean Tracking Rate (MTR).”

• Mean Trajectory Error (MTE): The goal of general

vSLAM is to “estimate of the locus of the camera

close to the GT.” As an evaluation of proximity, we

output the distance error for each time step and the av-

erage value of a sequence as“Trajectory Error [m]”.

Because we are using monocular vSLAM in our im-

plementation, we calculate the error after adjusting the

scale to the GT according to Horn’s method [9]. How-

ever, it should be noted that we calculate the error only

for“Success Tracking” (“Tracking Rate” exceeds 80

[%]). This is because if the “Tracking Rate” is low,

one can set the error to zero when adjusting the scale

based on Horn’s method. However, this is not a proper

evaluation. We formulated the“Mean Trajectory Error

(MTE) [m]” for all trials in a sequence as follows:

MTE =
1

m

m∑

i=1

(
1

ni

ni∑

t=1

∥Xt − Yit∥2) (2)

For each sequence, m(≤ 50) results (“Tracking Error

[m]”) of i = 1, ...,m = 50 are obtained (m(≤ 50)
is the number of “Successful Tracking” trials). It is

necessary to compare the trajectories at each time step

t. The “Tracking Error” for a trial (i) is calculated

by averaging the error between the GT 3D position Xt

and 3D position Yit in the estimated trajectory (scaled

according to Horn’s method [9]) over the entire time

series (t = 1, ..., ni).

In Section 4.3, we compare the results of baseline vSLAM

376



(a) Video3, Baseline[15] (b) Video3, Ours

(c) Video3, Baseline[15] (d) Video3, Ours

Figure 8: A failure example for our method (Video 3). Re-

stricting detection areas in our method makes it easier for

feature points to be found in puddle areas, which reduces

accuracy.

[15] and our method for these two evaluation metrics.

4.3. Results

In this section, we present the results of our experi-

ment. The results of evaluation (“Mean Tracking Rate”

and“Mean Trajectory Error”) for all datasets are listed in

Table 2. One can see that improvement was observed in

both metrics when using our method. Furthermore, in order

to visualize the results in detail, we illustrated the results for

each sequence in Fig. 6.

We determine that vSLAM’s performance has improved

when the “Tracking Rate” value increases or the “Tra-

jectory Error” value decreases. As one can see in Fig. 6,

we found that both evaluation metrics improved for all se-

quences when using the proposed method.

The degree of improvement in “Mean Trajectory Er-

ror (MTE)” may appear small in Table 2. However, as de-

scribed in Section 4.2, we only used data from“Successful

Tracking” trials (whose“Tracking Rate” is 80[%] or more)

for the calculation of“Mean Trajectory Error (MTE).” Be-

cause the baseline “Tracking Rate” is low, we calculated

the“Trajectory Error” using a small number of data sam-

ples (trials). In contrast, because our method’s “Tracking

Rate” is high, we calculated our method’s“Trajectory Er-

ror” using a large number of trials. The error differences

between the baseline and our method are small because the

trials were thresholded and only successful trials were con-

sidered.

In order to analyze the details of how our method con-

tributes to improvement, we refer to certain examples in de-

tail. We focus on two results out of 100 sequences compris-

video 3

MTR [%] MTE [m]

Baseline[15] 14.0 7.1

Ours 10.0 16.8

Table 4: Comparison of average values of results for Video

3

Figure 9: The limitations of ORB-SLAM [15]. Red points

are the extracted feature points in this frame. Green points

are the re-projected points matching the red points from the

last frame. The blue lines connect pairs of points. If a red

point and green point overlap (close), it can be said that

correct correspondence was obtained between those two

points. However, such correspondences were very rare.

ing datasets. We refer to these results as Video 1 and Video

2. The results are presented in Fig. 7 and Table 3. Fig. 7

presents feature extraction for one frame by each method

and the estimated trajectories of each sequence. Regard-

ing the estimated trajectories, the top five tracks based on

“Tracking Rate” are drawn overlapping.

It is confirmed that the results are improved by our

method compared to the baseline method. With respect

to Video 1, the concentration on the sky region was sup-

pressed by restricting the feature point detection area using

the mask. As a result, feature points were extracted from

the entire view, and the estimation result became stable. Re-

garding Video 2, baseline vSLAM halted and lost its posi-

tion because car covered the entire view. However, in the

proposed method, by successfully excluding the detection

of feature points in car regions using the mask, tracking

of feature points succeeded without halting the operation

of our method. When comparing the results of trajectories

in each video, the baseline method outputs trajectories that

deviate from the GT, but the proposed method outputs rela-

tively accurate trajectories overlapping the GT. As a result,

both the“Tracking Rate” and“Trajectory Error” are im-

proved.

The proposed method does not always produce good re-

sults when using all the data. Video 3 is a failure example.

377



This is clearly shown in Fig. 8 and Table 4. The weather in

Video 3 is WetCloudy Sunset and there are puddles on the

road. Tracking feature points of the contours of buildings

mirrored on the surfaces of puddles caused degradation of

the estimation accuracy of vSLAM. In our method, by ex-

cluding cars and the sky using the mask, feature points were

more likely to be detected in the puddle area compared to

the baseline method. As a result, both“Tracking Rate” and

“Trajectory Error” were degraded.

We also analyzed the limited performance enhancement

when the ORB-SLAM [15] runs in an ideal outdoor envi-

ronment. For this, we used the GT semantic segmentation

obtained from CARLA instead of the output of semantic

segmentation process as the mask for Mask-SLAM. We la-

bel this method as “ours (oracle).” Our method (oracle)

represents the performance limit of ORB-SLAM, but there

are still many errors. The MTR was 58.6 and the MTE was

12.0. One can see from the result 9 of visualizing the cor-

respondences between ORB feature points in ORB-SLAM

that a considerable number of correspondences are incor-

rect. To further improve the performance, we must study

features with better performance than ORB features [16].

5. Conclusion

We proposed a novel approach to combining feature-

based vSLAM and semantic segmentation. Semantic seg-

mentation outputted the results of classifying objects into

semantic areas within an image and we generated a mask

from the semantic areas that were inappropriate for vS-

LAM. Our vSLAM method only extracts feature points

from regions excluded by the mask and can select only re-

liable feature points. This enables vSLAM to work accu-

rately and stably without losing its position.

We clarified the effectiveness of our method using simu-

lated data that is as close as possible to a real environment.

Our method achieved superior results when compared to

baseline vSLAM in terms of two evaluation metrics that

evaluate the performance of vSLAM.

As a future research direction, it is necessary to imple-

ment an algorithm to automatically determine the mask area

in order to cope with situations similar to the situation in

Video 3. Additionally, the introduction of semantic seg-

mentation is too time consuming at this stage, meaning our

method cannot operate in real time. It is necessary to design

a high-speed semantic segmentation algorithm for adoption

into vSLAM.

References

[1] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. DeepLab: Semantic Image Segmentation with

Deep Convolutional Nets, Atrous Convolution, and Fully

Connected CRFs. arXiv:1606.00915, 2016. 4

[2] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse.

MonoSLAM: Real-Time Single Camera SLAM. IEEE

transactions on pattern analysis and machine intelligence,

29(6):1052–1067, 2007. 1

[3] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and

V. Koltun. CARLA: An Open Urban Driving Simulator. In

Proceedings of the 1st Annual Conference on Robot Learn-

ing, pages 1–16, 2017. 1, 2, 4

[4] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The Pascal Visual Object Classes

(VOC) Challenge. International Journal of Computer Vi-

sion, 88(2):303–338, June 2010. 3

[5] M. A. Fischler and R. C. Bolles. Random Sample Consen-

sus: A Paradigm for Model Fitting with Applications to Im-

age Analysis and Automated Cartography. Commun. ACM,

24(6):381–395, June 1981. 1, 2, 3

[6] R. Garg, V. K. BG, G. Carneiro, and I. Reid. Unsupervised

CNN for Single View Depth Estimation: Geometry to the

Rescue. In European Conference on Computer Vision, pages

740–756. Springer, 2016. 2

[7] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for Au-

tonomous Driving? The KITTI Vision Benchmark Suite.

In Conference on Computer Vision and Pattern Recognition

(CVPR), 2012. 2

[8] K. He, X. Zhang, S. Ren, and J. Sun. Spatial Pyramid Pool-

ing in Deep Convolutional Networks for Visual Recognition.

In european conference on computer vision, pages 346–361.

Springer, 2014. 4

[9] B. K. Horn. Closed-form solution of absolute orientation

using unit quaternions. JOSA A, 4(4):629–642, 1987. 6

[10] G. Klein and D. Murray. Parallel Tracking and Mapping for

Small AR Workspaces. In Mixed and Augmented Reality,

2007. ISMAR 2007. 6th IEEE and ACM International Sym-

posium on, pages 225–234. IEEE, 2007. 1

[11] P. Krähenbühl and V. Koltun. Efficient Inference in Fully

Connected CRFs with Gaussian Edge Potentials. In Ad-

vances in neural information processing systems, pages 109–

117, 2011. 4

[12] S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Fea-

tures: Spatial Pyramid Matching for Recognizing Natural

Scene Categories. In Computer vision and pattern recogni-

tion, 2006 IEEE computer society conference on, volume 2,

pages 2169–2178. IEEE, 2006. 4

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

Based Learning Applied to Document Recognition. Pro-

ceedings of the IEEE, 86(11):2278–2324, 1998. 1

[14] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Com-

mon Objects in Context. In European conference on com-

puter vision, pages 740–755. Springer, 2014. 3

[15] Mur-Artal, Raúl, Montiel, J. M. M., Tardós, and J. D. ORB-

SLAM: A Versatile and Accurate Monocular SLAM System.

IEEE Transactions on Robotics, 31(5):1147–1163, 2015. 1,

3, 5, 6, 7, 8

[16] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB:

An efficient alternative to SIFT or SURF. In Computer Vi-

sion (ICCV), 2011 IEEE international conference on, pages

2564–2571. IEEE, 2011. 3, 8

378



[17] K. Tateno, F. Tombari, I. Laina, and N. Navab. CNN-SLAM:

real-time dense monocular SLAM with learned depth predic-

tion. CoRR, abs/1704.03489, 2017. 2

[18] S. Vijayanarasimhan, S. Ricco, C. Schmid, R. Sukthankar,

and K. Fragkiadaki. SfM-Net: Learning of Structure and

Motion from Video. arXiv preprint arXiv:1704.07804, 2017.

2

[19] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe. Unsu-

pervised Learning of Depth and Ego-Motion from Video.

In Conference on Computer Vision and Pattern Recognition

(CVPR), 2017. 2

379


