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Abstract

Predicting the depth map of a scene is often a vital com-

ponent of monocular SLAM pipelines. Depth prediction

is fundamentally ill-posed due to the inherent ambiguity

in the scene formation process. In recent times, convolu-

tional neural networks (CNNs) that exploit scene geometric

constraints have been explored extensively for supervised

single-view depth prediction and semi-supervised 2-view

depth prediction. In this paper we explore whether recurrent

neural networks (RNNs) can learn spatio-temporally accu-

rate monocular depth prediction from video sequences, even

without explicit definition of the inter-frame geometric con-

sistency or pose supervision. To this end, we propose a novel

convolutional LSTM (ConvLSTM)-based network architec-

ture for depth prediction from a monocular video sequence.

In the proposed ConvLSTM network architecture, we har-

ness the ability of long short-term memory (LSTM)-based

RNNs to reason sequentially and predict the depth map for

an image frame as a function of the appearances of scene

objects in the image frame as well as image frames in its tem-

poral neighborhood. In addition, the proposed ConvLSTM

network is also shown to be able to make depth predictions

for future or unseen image frame(s). We demonstrate the

depth prediction performance of the proposed ConvLSTM

network on the KITTI dataset and show that it gives results

that are superior in terms of accuracy to those obtained via

depth-supervised and self-supervised methods and compa-

rable to those generated by state-of-the-art pose-supervised

methods.

1. Introduction

Scene reconstruction is one of the fundamental problems

in computer vision research. In recent times, learning-based

approaches to depth estimation have been explored and ex-

ploited widely for 3D scene reconstruction in a wide range

of applications including simultaneous localization and map-

ping (SLAM) for self-driving cars and virtual reality (VR)-

based and motion capture (MOCAP)-based gaming, to cite

a few. For a given input image, infinite depth maps can be

conjured up and determining the correct one is very difficult.

However, by understanding the underlying scene semantics

and employing suitable priors one can narrow down the pos-

sibilities to obtain realistic depth maps in a reasonable time

frame. For example, for a continuous video of a slowly

changing scene, the corresponding depth map also exhibits

low temporal variation. Consequently, temporal smoothness

is an important prior that is exploited in almost all current

SLAM techniques.

Significant recent progress has been made in single- and

multi-view 3D scene reconstruction, deriving 3D scene struc-

ture from motion (SfM) and simultaneous localization and

mapping (SLAM) [9, 22]. However, accurate monocular

depth prediction through deep learning is considered the ulti-

mate test of the efficacy of modern learning- and prediction-

based 3D scene reconstruction techniques. The ready avail-

ability of RGBD sensors (such as Kinect and LiDAR) in

recent times has made acquiring pairs of images with ac-

companying depth maps considerably easier, at least for the

purpose of learning, even if too expensive for perpetual de-

ployment. Pre-calibrated stereo rigs also provide an effective

substitute for RGBD sensors, but require reasoning about

scene disparity. Monocular prediction using pairs of frames

is the toughest, as one needs to reason about the relative cam-

era pose as well as disparity/flow and there is an inherent

ambiguity in scale, unless we resort to a consistent SLAM

like reconstruction pipeline.

Learning to predict depth, even if only approximately,

provides an opportunity to inject valuable information into

the 3D reconstruction, 3D pose estimation and inference

procedures in SLAM. Learning complex semantic scene

relationships by capturing the spatio-temporal relationships

between image entities (such as regions and textures) across

different imaging modalities (such as RGB images and depth

maps) calls for the formulation of complex learning models

accompanied by large datasets. In recent times, aided by the

rapid progress in deep learning methods and availability of

large datasets [11], learning-based techniques for some of
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Figure 1: Proposed network architecture: The encoding layer consisting of multiple ConvLSTM [31] layers (orange blocks)

takes a single image or image sequence as input at test time. The decoding layer consisting of an alternating sequence of

deconvolutional and convolutional layers ((blue blocks) reconstructs the depth maps.

the sub-problems in SLAM has become viable, e.g., [6, 19,

12, 32, 28]. Methods in predictive reconstruction also need

to account for uncertainty and noise in the video sequence

data, especially when distinct objects in a scene have motion

parameters that are independent of the global camera motion

parameters (e.g. multiple cars moving in different directions

on a road). Additionally, unlike depth maps which can be

readily obtained using depth sensors, getting accurate ground

truth pose data for objects moving independently in a scene

is much more difficult.

In this paper, we propose a scheme for learning object

pose implicitly from sequences of image and depth map

pairs for training. We demonstrate that we are able to ef-

fectively learn and predict depth as a function of image

appearance over time using an LSTM-based deep learning

model [27] The proposed model is shown to capture inter-

frame dependencies and variations, without explicit mod-

eling of the object pose. Given a sequence of images, the

proposed spatio-temporal approach predicts the depth map

using both the current image frame and its predecessors. We

also demonstrate the performance of the proposed approach

on predicting the depth maps for future or unseen image

frames given the current image frame and/or previous image

frames by harnessing the sequential reasoning capability of

the LSTM.

While use of depth as supervision or priors based on

reasoning about forward-backward image consistency have

been substantially explored, temporal smoothness as a prior

is relatively unexploited when using a video sequence as in-

put. In this paper, we propose a novel convolutional LSTM-

based recurrent neural network architecture that learns depth

as a function of appearance while implicitly learning the ob-

ject pose and its smooth temporal variation. The goal of the

paper is to demonstrate that the use of temporal information

is particularly effective in estimating depth. The proposed

convolutional LSTM-based recurrent neural network archi-

tecture is depicted in Figure 1.

2. Related Work

Traditional structure-from-motion (SFM) and SLAM tech-

niques jointly estimate structure and motion parameters,

either using point correspondences [9, 22, 29, 30] or di-

rect methods [7, 23]. In recent times, CNN-based ap-
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Figure 2: Comparison of pose predictions: Traditional SLAM-based camera calibration versus deep learning-based pose

regression. The 3D coordinates obtained using camera matrices are plotted for an example image sequence from the KITTI

dataset [11]. (a) Coordinates plotted in dark gray represent the ground truth path or trajectory whereas the path plotted in

light gray represents the output of a traditional SLAM algorithm [1] on a Kitti sequence, without inertial measurements; (b)

Path plotted using camera parameters estimated via deep learning techniques [32] (left) versus the ground-truth plot (right).

We observe considerable drift between the dark gray and light gray plots in the case of the traditional SLAM algorithm (a)

especially in the absence of inertial measurements. However, the traditional SLAM algorithm is able to estimate the object

pose over longer image sequences with higher accuracy than the deep learning based pose prediction technique (b).

proaches [6, 18, 12, 28, 17] have been seen to achieve

good performance on well constrained subsets of the gen-

eral monocular reconstruction problem, e.g. predicting depth

and pose given a single or 2-3 consecutive images in space

and/or time. The ability of CNN-based approaches to cap-

ture complex relationships between the depth maps and the

corresponding image textures along with other scene seman-

tics has been demonstrated in [6, 12, 28]. These CNN-based

approaches are trained either in a depth supervised man-

ner [6, 18] from a single view to predict corresponding depth

maps, or in a pose/self-supervised mode employing photo-

consistency with input stereo images [12, 17] or consecutive

images in time and their capabilities are often demonstrated

on single-view depth prediction [28, 32]. The FlowNet ar-

chitecture proposed by Dosovitskiy et al. [5] for optical-

flow estimation is based on an encoder-decoder CNN where

channel-concatenated image pairs are provided as input to

the network that learns optical flow in a supervised fashion.

A CNN variant termed as FlowNetCorr, merges two differ-

ent convolutional networks from pairs of adjacent images,

by correlating the tensors to learn the disparity map, mimick-

ing the traditional point correspondence-based optical flow

methods.

Since the formulation of FlowNet and FlowNetCorr archi-

tectures, several approaches have proposed encoder-decoder

CNN architectures for computing disparity maps, which are

subsequently used for depth prediction [12, 21, 28]. Ad-

ditionally, the architecture proposed by Godard et al. [12]

learns to minimize the left-right consistency between adja-

cent image pairs to improve the pose estimation accuracy in

a pose-supervised setting. The stereo problem formulated

in [12] assumes a known pose, making it equivalent to one

of estimating depth through disparity. On the other hand,

Zhou et al. [32] propose a joint pose and depth prediction

technique that learns reconstruction up to scale in an unsu-

pervised setting using video frames as input. In addition,

explainabilty masks are used to isolate individual motions

of objects that do not agree with the predicted motion pa-

rameters of the scene [32]. Vijayanarasimhan et al. [28]

extend the work of Zhou et al. [32] to model the individ-

ual motions of the objects isolated using the explainability

maps. In their more recent work, DeTone et al. [4] propose

a CNN-based approach that identifies isolated and evenly

distributed feature points from image pairs, which are then

fed to another neural network that learns to compute the

homography between them.

While the use of object pose information has been shown

to improve depth prediction accuracy considerably [12], ob-

ject pose predicted using optical flow-based approaches on

real-world images [28], is far from accurate, and in fact often
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falls short in comparison to traditional point correspondence-

based pose estimation approaches. Figure 2 displays visual

plots of traditional SLAM-based object pose predictions and

deep learning-based pose estimations where the former are

shown to outperform the latter in terms of pose estimation

accuracy. Eigen et al. [6] propose a simple, but effective

scheme for monocular depth prediction from image appear-

ance, albeit with considerable supervision. Their network

consists of two components, the first component is a tra-

ditional convolutional network that captures coarse global

scene structure, followed by the refinement of the estimated

coarse depth map using the image color/texture information.

In addition, they also propose a scale-invariant error measure

to address the global scale ambiguity. In this paper, we ex-

tend the scheme proposed by Eigen et al. [6], to predict depth

from an image explicitly, while modelling pose information

implicitly via temporal reasoning using LSTMs.

2.1. Recurrent Neural Networks for Temporal
Learning

Recurrent neural networks (RNNs) [14] are a class of

neural networks that models the temporal behavior of se-

quential data using hidden states with cyclic connections. In

feed-forward convolutional networks the gradient is back-

propagated through the network; an RNN additionally back-

propagates through time (across multiple instances of the

network) that enables them to learn dependencies across

time. The long short-term memory (LSTM) [14] is an ex-

tension of the traditional RNN, that is capable of learning

long-term dependencies within an input sequence.

Recently several approaches have used the LSTM for

learning temporal dependencies across image frames in a

video sequence [8, 20, 26]. Srivastava et al. [26] learn a

video representation using an encoder-decoder framework

which is then used for future frame prediction. Similarly,

Lotter et al. [20] propose a predictive neural network that is

inspired by predictive coding and trained in an unsupervised

fashion for the purpose of video prediction. Choy et al. [3]

present a scheme for learning the mapping between images

and the corresponding 3D object shapes using a gated recur-

rent unit GRU [2], a variant of LSTM with fewer parameters.

At test time Choy et al. [3] reconstruct a 3D occupancy grid

for the underlying scene using one or more images.

In our paper, we employ a convolutional LSTM (Con-

vLSTM) [31], to model the spatio-temporal dependencies

between video frames for the purpose of predicting depth

maps. The use of the ConvLSTM instead of the traditional

fully-connected LSTM allows us to jointly exploit the ability

of the multiple convolutional layers to capture appearance

cues at multiple spatial scales along with the ability of the

LSTM to reason about the temporal variations in the input

data, without losing any spatial information.

The major contributions of our paper can be summarized

as follows:

• We adapt the convolutional LSTM (ConvLSTM)-based

encoder-decoder architecture for scene depth prediction

from monocular video sequences. Given temporally

adjacent image frames and their corresponding coarse

ground truth depth maps, the proposed ConvLSTM

network has the opportunity to learn a spatio-temporal

mapping between the image and depth data. At test

time, the network can predict depth maps from both,

image sequences and single images.

• We demonstrate the ability of the network to reason se-

quentially, by extrapolating the current depth maps for

the future (or unseen) image frames, without explicitly

training it to do so.

• We present new results for monocular depth predic-

tion, on the KITTI dataset [11], that outperforms other

depth(only) [6, 19], pose/stereo-supervised [12, 10] and

other self-supervised [32] methods, and are comparable

to some state-of-the-art [17] that use depth+pose/stereo.

3. Proposed Approach

We propose using a convolutional LSTM (ConvLSTM)-

based network architecture for depth prediction from a

monocular video sequence. In contrast to traditional depth

prediction models that process a single input image, the pro-

posed ConvLSTM network learns depth maps from a set of

N consecutive video frames in a depth-supervised setting, al-

lowing the ConvLSTM network to perform spatio-temporal

reasoning about the image-depth map relationship. In ad-

dition, unlike the traditional LSTM-based approaches [3],

where a fully-connected LSTM layer is introduced between

encoder and decoder networks, we stack a set of ConvLSTM

layers [31] on top of each other to construct the encoding

phase. The ConvLSTM is a variant of the traditional fully

connected LSTM that has convolutional structures under-

neath. The traditional LSTM layer unfolds the input tensor

into a vector, thus does not take into consideration the spatial

correlations between the grid cells [31]. The advantage of

stacking multiple ConvLSTM layers is that, the multiple

LSTM layers allows the network to better learn the temporal

information whereas the underlying convolutional structure

helps retain the spatial relationships between the grid cells.

Moreover, the use of the ConvLSTM also reduces the total

number of trainable network parameters significantly [31].

This is in contrast to the fully connected LSTM layers which

unfold to generate a densely connected vector with much

spatial data redundancy. In the proposed network, the Con-

vLSTM layers can be shown to effectively capture the spatio-

temporal information with much higher accuracy than the

traditional LSTM layers.
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In the proposed network, the encoder layer is comprised

of ConvLSTM layers, each layer holding N states where

N is the total number of timestamps. The decoder layer

reconstructs the depth maps learned for each of the states

separately. The decoder layer follows an architecture similar

to that of the U-Net [24], with N separate deconvolutional

layers and skip connections between the encoder and de-

coder layers. This decoder architecture, which has been

shown to work well for several reconstruction tasks [32],

also allows for more accurate reconstruction of the depth

map. In the proposed network, the encoder layer learns

the spatio-temporal relationships between N image frames

for the purpose of predicting the depth maps whereas the

decoder layer learns to reconstruct the N individual depth

maps.

4. Network Architecture

The proposed network architecture illustrated in Figure 1,

consists of an encoding (contraction) phase followed by a de-

coding (expansion) phase. The encoding (contraction) phase

takes as input a set of N consecutive video frames and com-

putes an intermediate depth representation towards the end.

The decoding (expansion) phase reconstructs the depth maps

from the intermediate depth representation. The encoding

(contraction) phase comprises of a stack of K ConvLSTM

layers that takes as input an image sequence across N time

points to learn the depth representation as a function of time.

As mentioned above, in comparison with a Fully-connected

LSTMs (FC-LSTM) [27], ConvLSTM [31] has fewer con-

nections, with shared weights, that make them easier to learn

than the dense connections of the traditional FC-LSTMs. In

addition FC-LSTM as opposed to ConvLSTM, does not take

spatial correlation into consideration [31]. Thus the ConvL-

STM well suited for learning the underlying representation

from spatio-temporal data. A more comprehensive descrip-

tion of the network architecture and details pertaining to its

training are provided in Section 5.

Unlike traditional ConvNets where the network learns

and predicts from a single view and the error is propagated

from the bottom layer of the decoder to the top layer of en-

coder, in our case the error propagates temporally thereby

capturing the time-dependent progression of the scene depth.

While the contraction (encoding) phase learns to encode

depth as a spatio-temporal function of the image sequences,

the expanding (decoding) phase learns to reconstruct the

depth map from the intermediate representation. We use

deconvolutional layers with skip connections for the purpose

of depth reconstruction. The architecture for the decoding

phase is detailed in Section 5. Towards the end of the expan-

sion phase, we use a 1 × 1 convolutional layer with sigmoid

activation to obtain the depth map. For training, we use a

scale-invariant error metric proposed by Eigen et al. [6] as

the loss function. Given a predicted depth map yi and its

ground truth depth map y∗
i

, the loss function [6] is given by:

L(y, y∗) =
1

n

∑

i

d2
i
−

λ

n2

(

∑

i

di

)2

(1)

where di = log(yi)− log(y∗
i
) for the ith pixel and n corre-

sponds to the total number of pixels, with the value of λ set

to 0.5 [6].

5. Implementation Details

Encoding Phase: The encoding phase consists of a series

of 3 × 3 ConvLSTM layers consisting of {32, 64, 64, 128,

128, 256, 256, 512} filters respectively, with alternating

strides of 2’s and 1’s, except for the first two layers that use

filters of size 7 × 7 and 5 × 5 respectively. While the relu

activation function is used in each convolutional step of the

ConvLSTM layer, the recurrent step uses the hard sigmoid

activation function. The padding is set to be the same for

all layers. The first ConvLSTM layer takes an input I of

size {B × N × H × W × C}, where H and W are the

height and width of the image respectively, C represents

the number of image channels (C is 3 as we use standard

RGB images), N is the total number of time steps and B is

the batch size. In our experiments we set the value of N to

3. Each ConvLSTM layer is designed to return the entire

sequence (comprising of all states) instead of just the final

state, so that it can be used in the decoding phase.

Decoding Phase: The decoding layer consists of alternating

sequence of deconvolutional and convolutional layers. The

deconvolutional or transposed convolutional layer takes as

input the output sequence the last ConvLSTM layer and

performs a deconvolution operation on it. We also use

skip connections across the encoding and decoding phases,

by concatenating the deconvolved tensor with the output

of the corresponding original convolutional layer. Since

concatenating the tensors doubles the number of channels,

we affix the concatenation layer with an additional convo-

lutional layer to reduce the tensor size. In recent times,

the use of skip connections has shown to work well, espe-

cially when dealing with the vanishing gradient problem [13]

thereby effectively allowing the exploration of deeper net-

work architectures. In a manner similar to the encoding

phase, we use a series of deconvolutional layers of sizes

{512, 256, 256, 128, 128, 64, 64, 32} respectively (which are

then followed by a concatenation and convolutional layer for

the skip connections) with alternating strides of 2’s and 1’s.

The filter sizes are set to 3 × 3 for all deconvolutional layers.

Towards the end, we use a 1 × 1 convolutional layer with

a sigmoid activation function that converts the tensor to a

depth map.

Training: The network is trained with inputs as temporally

concatenated image sequences of size N , with the corre-
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Figure 3: Qualitative results (good). (a) Image (t) (b) Corresponding ground truth depth map (c) Depth predictions from Eigen

et al. [6] (depth-supervised) (d) Depth predictions from Zhou et al. [32] (e) Depth predictions from the proposed scheme (note:

the proposed scheme uses N − 1 preceding images in addition to the test image (a), for predicting the depth map)

Figure 4: Qualitative results (bad). (a) Image (t) (b) Corresponding ground truth depth map (c) Depth predictions from Eigen

et al. [6] (depth-supervised) (d) Depth predictions from Zhou et al. [32] (e) Depth predictions from the proposed scheme (note:

the proposed scheme uses N − 1 preceding images in addition to the test image (a), for predicting the depth map)

sponding ground truth depth map as output. We use batch

normalization [15] layers after each pair of convolution or de-

convolutional layers, and train the network using the Adam

optimizer [16], with a learning rate of 1× 10−4 and the loss

function described in Section 4. In most cases, the valida-

tion loss is observed to converge within 20 epochs. Details

regarding the dataset split are provided in Section 6.

6. Evaluation

We train and evaluate our model on the KITTI

dataset [11]. The KITTI dataset consists of video sequences

of outdoor scenes along with their corresponding depth maps,

procured using car-mounted cameras and Velodyne LiDAR

sensors. We use the train/test split described in [6], where we

train on 28 sequences and test on the 697 images provided
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Table 1: Comparison of monocular depth prediction results on KITTI dataset [11].

θ Supervision Error Metric Accuracy Metric

Depth Pose Unsupervised Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al. [6] (Coarse) X 0.214 1.605 6.563 0.292 0.673 0.884 0.957

Eigen et al. [6] (Fine) X 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu et al. [19] X 0.202 1.614 6.523 0.275 0.678 0.895 0.965

(Ours–image sequence) X 0.137 1.019 5.187 0.218 0.809 0.928 0.971

(Ours–single image) X 0.176 1.3711 5.971 0.265 0.740 0.896 0.959

(Ours tn+1 frame) X 0.296 3.251 9.849 0.469 0.535 0.749 0.855

(Ours–CNN) X 0.145 1.062 5.424 0.273 0.754 0.904 0.969

Godard et al. [12] X 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Garg et al. [10] (50m cap) X 0.169 1.080 5.104 0.273 0.740 0.904 0.962

Zhou et al. [32](w/ exp. mask) X 0.221 2.226 7.527 0.294 0.676 0.885 0.954

Zhou et al. [32] X 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Zhou et al. [32] (50m cap) X 0.208 1.551 5.452 0.273 0.695 0.900 0.964

Kuznietsov et al. [17] X X(stereo) 0.113 0.741 4.621 0.189 0.875 0.964 0.988

Kuznietsov et al. [17] X(stereo) 0.308 9.367 8.700 0.367 0.752 0.904 0.952

Figure 5: Qualitative demonstration of depth prediction results for the current image frame and future image frames obtained

by unfolding the LSTM layers (a) Images at times tn−2, tn−1, tn, (b) The corresponding ground truth depth maps (c) Depth

predictions of the proposed ConvLSTM network for image frames at time steps tn−2, tn−1, tn (which is the way the network

is actually trained to predict) (d) Predictions of the proposed ConvLSTM network, for future frames at time tn−1, tn, tn+1 (e)

predictions of the proposed ConvLSTM network for future frames at time tn, tn+1, tn+2. For (d) & (e), it must be noted that,

the proposed ConvLSTM network is not trained to predict future frames; instead we mask the inputs for specific time steps

and force the network to predict the frames, thereby exploiting its recurrent nature. Qualitative analysis of the results over

several images showed that the proposed network was able to reliably estimate the layout of the scene, but failed to interpolate

accurately the motion of the scene objects into the future.

in [6]. Throughout our experiments, the number of time

steps for training the ConvLSTM is set to 3. We evaluate our

approach by using the standard metrics proposed by [6].

6.1. Depth Prediction from Monocular Sequences
and Single Images

Although the proposed network is trained using fixed-

length image sequences, at test time we evaluate its per-

formance on both monocular image sequences and single

images. In addition, we also evaluate, qualitatively and

quantitatively, the accuracy of the extrapolated depth maps

corresponding to future (or) unseen image frame(s).

Monocular Image Sequences: For predicting depth on im-

age sequences, we gather image sequences of of size N —of

the 697 images provided by [6], 23 images are the first of
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their respective sequences, which we had to omit for this

experiment as they have no preceding images. We tabulated

the results of our approach against other state-of-the-art in

Table 1. The proposed approach is observed to outperform

depth-supervised approaches while yielding results compa-

rable to those of pose-supervised techniques [10, 12]. The

qualitative depth prediction results are shown in Figures 3

and 4, where Figure 4 shows instances where the proposed

approach fails to predict the scene depth reasonably. In or-

der to demonstrate the improvement due to the use of the

ConvLSTM component over the CNN baseline, we trained a

CNN with a similar architecture and reported the results in

Table 1. Our results outperforms most (reported) state-of-the-

art methods that are depth-supervised [6, 19], pose/stereo-

supervised [12, 10] supervised and other self-supervised

approaches [32]. While our numbers are inferior to [17]

(Table 1, row 13 ), it must also be noted that [17], uses both

depth and stereo as supervision, along with more sophisti-

cated and deeper network architecture (ResNet [13]) with

pre-trained weights, as opposed to our less sophisticated

network (in terms of depth) that does not rely on pre-trained

weights [25].

Single Images: Although the network is trained using image

sequences, the decoding layer is designed to individually

reconstruct each state of the encoding phase. Doing so allows

us to use a single image at test time, and still get reliable

depth reconstruction, although the network is trained using

image sequences only. Using a single image at test time

would mean that only the first recurrent layer will receive

input (others will get empty placeholders), in which case

the network will act like an end-to-end ConvNet or CNN

instead of a recurrent network. The quantitative results for

depth prediction using single images are presented in Table 1.

The results are comparable to the predictions obtained using

monocular sequences and are even better than those of most

other approaches.

Future Depth Prediction: As an attempt to exploit the

ability of the LSTM to reason temporally, we analyze quan-

titatively its ability to predict depth maps of future frames.

The goal of the experiment is to see how well the network

is able to learn inter-frame dependencies. For that purpose,

in a manner similar to our previous experiment, we replace

images in the image sequence with empty placeholders, and

force the network to predict depth maps. The quantitative

results are presented in Table 1. Though the prediction re-

sults are not comparable, the future prediction results show,

both qualitatively and quantitatively, how the information

propagates over time, and how well the network is able to

learn inter-frame dependencies. The qualitative results for

future depth prediction are depicted in Figure 5. The results

suggest that the future frame predictions, though not quite

accurate especially when modeling individual objects, are

still able to estimate the layout of the scene reasonably well.

Also, it has to be noted that we do not train the network

explicitly for predicting future image frames, instead we

simply force the network to predict by masking the input(s).

7. Conclusion

In this paper we explored whether recurrent neural net-

works (RNNs) can learn spatio-temporally accurate monoc-

ular depth prediction from video sequences, even without

explicit definition of the inter-frame geometric consistency

or pose supervision. To this end, we proposed a novel convo-

lutional LSTM (ConvLSTM)-based network architecture for

depth prediction from a monocular video sequence. In the

proposed ConvLSTM network architecture, we harnessed

the ability of long short-term memory (LSTM)-based RNNs

to reason sequentially and predict the depth map for an im-

age frame as a function of the appearances of scene objects

in the image frame as well as image frames in its temporal

neighborhood. We demonstrated quantitatively and qual-

itatively that the proposed ConvLSTM is able to perform

better at depth prediction than traditional CNN models, by

obtaining convincing state-of-the-art results on the KITTI

dataset compared to current depth-supervised approaches.

Although our network is trained to make depth predictions

for image sequences, it can predict depth maps, at test time,

on single images as well with high accuracy. Also, we have

demonstrated the network’s ability to reason temporally, by

extrapolating depth maps for future/unseen frames, without

the network being explicitly trained to do so. In the future,

we plan to automatically learn explainability masks, that

would model individually each independently moving object

in the scene. The explainability masks could then be used

for predicting the depth map for each individual object, in

the current image frame and in future image frames, more

accurately.
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