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Abstract

Deep learning has become the standard model for ob-

ject detection and recognition. Recently, there is progress

on using CNN models for geometric vision tasks like depth

estimation, optical flow prediction or motion segmentation.

However, Visual SLAM remains to be one of the areas of au-

tomated driving where CNNs are not mature for deployment

in commercial automated driving systems. In this paper, we

explore how deep learning can be used to replace parts of

the classical Visual SLAM pipeline. Firstly, we describe the

building blocks of Visual SLAM pipeline composed of stan-

dard geometric vision tasks. Then we provide an overview

of Visual SLAM use cases for automated driving based on

the authors’ experience in commercial deployment. Finally,

we discuss the opportunities of using Deep Learning to im-

prove upon state-of-the-art classical methods.

1. Introduction

Automated driving is a rapidly advancing application

area with a complex structure (see Fig.1) and lots of

progress in Deep Learning. There are two main paradigms

in this area:

1. The mediated perception approach which semantically

reasons the scene [26, 55] and determines the driving

decision based on it.

2. The behavior reflex approach that learns the driving

decision end-to-end [5, 66].

The behavior reflex methods can benefit from semantic rea-

soning of the environment. For example, an auxiliary loss

on semantic segmentation [66] was used with end-to-end

learning. On the other hand, semantic reasoning is a cen-

tral task in mediated perception, followed by the control

decision separately. Semantic reasoning of the scene in-

cludes self-localization, object detection, motion detection,

depth estimation, object tracking and others. CNNs (Con-

volutional Neural Networks) have demonstrated remarkable

leaps for various computer vision tasks especially for ob-

ject recognition. They are computationally intensive and

the main challenge is to design efficient regression losses.

In contrast Visual-SLAM approaches based on CNN with

state-of-the-art results are rare.

Since, the rise of the key-frame based SLAM [16], the

standard pipeline of feature-based Visual SLAM mainly

consists of the classical steps of a structure from motion

(SfM) algorithm [30]. In contrast, more recent approaches

like [20] consider the image directly. However, classical

approaches for monocular Visual SLAM share a major lim-

itation in map robustness. Indeed, scene changes or varying

illumination make the map less efficient if not obsolete for

reutilization. In [38] the authors try to learn an illumination-

robust feature for place recognition, but it is still limited to

some extent and does not face the scene change issue.

The map retraining is a long term subject in the com-

munity. Starting with the early approach of [3],[35] builds

a schedule to update the map when several sessions are at-

tempted. More recently [13] and [45] proposed two concur-

rent and promising approaches. In order to compare these

methods, the community lacks of a public dataset dedicated

to this topic again which authors could compete.

On the hardware side, very few Visual SLAM algorithms

in literature [46, 20] are suitable for low computational

power constraints of current automotive systems. In con-

trast, industrial systems such as [44] rely on server-client

architecture to carry the heavy computations.

Section 2 provides an overview of existing Visual SLAM

approaches. Section 3 discusses the use cases of Visual

SLAM in automated driving and the challenges faced by

classical approaches. In Section 4 opportunities are pre-
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Figure 1: Visual SLAM is inevitable within the complex structure of automated driving. This figure shows how local map

generation or vehicle pose estimation are essential for solving tasks within the perception based pipeline of automated driving.

SLAM must be used for environmental modeling. In general, SLAM could be done with different sensor types. However,

we focus on Visual SLAM, because its able to deal effectively with dense data, the cameras are widely distributed and they

have a large field of view with an acceptable range. Compared to all perception algorithms, where best performing methods

use CNNs, current state of the art Visual SLAM algorithms are not based on deep learning. We figure out CNN opportunities

especially for geometric tasks.

sented where parts of the fundamental pipeline can be re-

placed using CNN based approaches. Section 5 provides an

overview of CNN based pipelines. Finally, Section 6 con-

cludes the paper and provides potential future directions.

2. Visual SLAM approaches

The term Visual SLAM comprises all SLAM approaches

that take image-like data as input. Therefore, the main dif-

ference to SLAM systems based on other sensors is the

need to generate depth information from consecutive cam-

era frames (see Fig. 1).

There are two major state of the art methods, feature

based and direct Visual SLAM. The first one relies on de-

scriptive image features like SIFT or ORB whereas the sec-

ond one uses the image pixels directly. Being different in

the aspect of which image information is used, they share

the same fundamental processing pipeline, though.

2.1. Fundamental Pipeline

The fundamental pipeline for Visual SLAM is composed

of tracking, mapping, global optimization and relocaliza-

tion.

Tracking between consecutive camera images is utilized

in order to generate a local camera trajectory as well as

depth information. Usually, this tasks ends up in a non-

linear optimization problem. In most approaches, so called

key frames are used as a base for tracking. Once tracking

indicates that there is not enough overlap between the cur-

rent camera frame and the key frame, a new key frame is

created.

Mapping is the process of generating a map out of the

tracked sensor data. This step is where the main difference

between feature based and direct methods is located. The

first generates sparse feature maps whereas the second one

provides (semi-)dense point maps as output. In some of the

approaches, key frames including depth and scale informa-

tion are stored in a graph with the edges representing the

transformation between key frames.

A Global Optimization step is needed for correcting

the global map as tracking introduces a drift error into the

map. As it is computationally expensive, global optimiza-

tion is usually done from time to time only. The global op-

timization step relies on recognizing a place that has been

seen and mapped before and therefore detecting a loop clo-

sure. Based on this detection, all camera poses can be op-

timized. In some approaches, the 3D information is jointly

optimized.

Relocalization is the procedure of placing the sensor at

an unknown pose in the map and trying to estimate the pose.

This is usually done by comparing the current sensor data

with the map. A common approach is to use descriptive

image features.
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Deep Learning opportunities for Visual SLAM in Automated Driving
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Figure 2: The Fundamental pipeline of Visual SLAM is composed of multiple geometric vision tasks including depth esti-

mation, optical flow and pose estimation. Those tasks have well known solutions based on CNNs in their individual domain.

In contrast, the overall Visual-SLAM is not dominated by Deep Learning.

2.2. Feature based SLAM

Feature based Visual SLAM methods utilize descriptive

image features for tracking and depth estimation. This re-

sults in sparse feature maps. Several approaches will be

explained in the following sections.

MonoSLAM by Davison et al. [16] is the first Visual

SLAM approach. It uses EKF-based feature tracking. There

is no loop closure detection and in order to achieve real-

time performance, only few feature points per frame a are

considered.

PTAM: The Parallel Tracking and Mapping (PTAM) al-

gorithm [34] extends the approach of Davison by paralleliz-

ing the feature point matching part in order to improve real-

time performance. For optimization, it uses bundle adjust-

ment (BA). Thus, it can handle many more feature points

which increases robustness.

ORB-SLAM [46] extends the functionality of PTAM by

adding loop closure detection and global pose graph opti-

mization. It also relies on the ORB feature descriptor which

is known to be robust while having low computational cost.

2.3. Direct SLAM

In contrast to feature based approaches, direct methods

do not rely on features for tracking but on the whole im-

age. This gives the chance to acquire a dense environment

model.

DTAM: Dense Tracking and Mapping (DTAM) [47] is

the first direct method published. While lacking features

like loop closure detection or global optimization, it intro-

duces tracking on key frames based on minimization of the

photometric error

Cr =
1

‖I(r)‖

∑

m∈I(r)

‖Ir(u)− Im(v)‖.

The mapping space is discretized into a 3D grid which lim-

its the maximum size of the map. Real-time performance is

achieved by performing computations on a GPU.

LSD-SLAM: Large-Scale Semi Dense SLAM (LSD-

SLAM) [20] is also based on the minimization of the pho-

tometric error. It extends the functionality to large scale

by building a pose frame graph and global optimization in-

cluding loop closure detection. Computational efficiency is

achieved by reducing the number of image pxiels used for

tracking to those showing a high intensity gradient.

DSO: In the publication of Direct Sparse Odometry

(DSO) [19], the authors extend the minimization model of

LSD-SLAM by taking the geometric error into the account

as well as exposure time and lens distortion

Cr =
1

‖I(r)‖

∑

m∈I(r)

‖Ir(u)− br −
tre

ar

tmeam

Im(v)− bm‖.

This leads to a more robust estimation of the trajectory. Al-

though being a direct method, the map generated is sparse

in order to achieve real-time performance. Loop closure

detection and global optimization is not an explicit part of

the approach but can be done in the same way as for LSD-

SLAM.

2.4. Benchmarks on KITTI

Table 1 describes the RMSE (degree per 100 m) for rota-

tional rrel and RMSE (%) translational error rrel. The results

are taken from Wang et al. [64]. The data refers to the mean

taken from all ten sequences (100 m to 800 m). For these au-

tomated driving scenarios, DSO yields the most promising

results. However, Wang et al. [64] claimed a bigger error

for the monocular implementation on what we focus. Fig. 3

shows the comparison for stereo versus monocular SLAM
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Table 1: Qualitative results on the KITTI [27] [64].

DSO ORB2 LSD

Sequence trel rrel trel rrel trel rrel

00 0.84 0.26 0.83 0.29 1.09 0.42

01 1.43 0.09 1.38 0.20 2.13 0.37

02 0.78 0.21 0.81 0.28 1.09 0.37

10 0.49 0.18 0.58 0.28 0.75 0.34

mean 0.84 0.20 0.81 0.26 1.14 0.40

Figure 3: Weakness of traditional monocular Visual SLAM

taken from [64]. The figure shows the qualitative results

on KITTI [27] trace 00. The left outlines mono SLAM ap-

proaches, the right shows stereo DSO.

using DSO and ORB. Although the stereo results are ac-

ceptable, the monocular results are weak and unacceptable

for automated driving. From that we derive lots of potential

using deep learning techniques to improve.

3. Use Cases and Challenges

Use cases for Visual SLAM in automated driving are

manifold. A reliable and fast mapping and localization of

the car is needed for almost any driving scenario. Due to

the high resolution of cameras compared to other sensors

like RADAR or LIDAR, situations that require a detailed

knowledge about the environment or generate ambiguous

signals from other sensors are dedicated for the application

of Visual SLAM. Thus, we identify the most relevant use

cases to be parking, highway driving and urban driving.

3.1. Driving Scenarios

For certain driving scenarios, application of Visual

SLAM is crucial. In the following section we describe park-

ing, highway and urban driving in detail.

3.1.1 Parking

Main requirement of parking is the need of an accurate en-

vironment map in the near vicinity of the car while driv-

ing at low speed. Most frequent scenarios are parking on

a parking deck, on a public parking lot and in the home

zone. Whereas the first two require small scale mapping in

an unknown environment, parking in an home zone is ded-

icated for the application of SLAM. First, the car learns a

trajectory in the home zone in parallel to recording an ini-

tial map. Once, the car returns to the home zone, the map is

loaded, relocalization takes place and the car can move on

the learned trajectory while updating the map.

Regarding types of maps, both feature maps and dense

point maps are suitable for this use case. Depending on the

type of features used, feature maps might be more suitable

for relocalization whereas dense point maps provide more

information about the environment.

3.1.2 Highway Driving

The highway driving scenario is a limited, but important

use case for Visual SLAM. Due to the higher speed, com-

pared to parking or urban driving, it gets challenging to run

Visual SLAM approaches in real-time, since a high frame

rate from at least 30fps is needed. On the other hand, the

environment geometry is less complex such as surrounding

objects are parallel arranged. Artal et al. [46] (see section

2.2) have shown on the KITTI benchmark suite [27] their

highest accuracy on stream four, which is a pure highway

scene. The method achieves a RMSE of 1.79 m, which is far

below the average over all scenes. It already achieved high

accuracy of sparse SLAM techniques for highway driving.

There is not much space for improvements using deep learn-

ing. However, due to the required high frame rate, an sparse

CNN based SLAM technique might be able to outperform

state of the art approaches in terms of efficiency.

3.1.3 Urban Driving

Automated driving within the inner city is extreme chal-

lenging. Compared to Highway Driving, the environment

is much more complex and varying, compared to the park-

ing scenario, the environment includes lots of dynamic ob-

jects that have to be detected actively or passively during 3D

reconstruction and localization. In the last section, we de-

scribed the high performance of ORB-SLAM [46] (sparse

and direct) on a KITTI highway trace. In contrast, their

results on urban scenarios are imprecise for large traces

up to an RMSE of 46.36 m (trace 8). This gives a slight

imagination how challenging it is and that we may need a

dense reconstruction within such an use case. On the other

hand, DSO-SLAM [19], a sparse direct method yields much

higher performance than ORB-SLAM even on large urban

dataset. Stereo-DSO is ranked on 14th for KITTI odometry

challenge. Therefore, it ranks higher than the semi-dense

direct LSD Stereo SLAM [20] (27th). Hence, not only the

number of reconstructed points, even the ability to recon-

sider static points with stability against lots of dynamic ob-

0The ranking refers to the date of submission the 20th of march 2018.
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Figure 4: Example of High Definition (HD) map from Tom-

Tom RoadDNA (Reproduced with permission of the copy-

right owner)

jects within the scene is a key strategy. Such intelligent

tasks could be improved by CNNs that learn good areas to

reconstruct with the aid of a large scaled dataset.

3.2. Types of Maps

Mapping is one of the key pillars of automated driv-

ing. The first reliable demonstrations of automated driv-

ing by Google were primarily reliant on localization to pre-

mapped areas. Because of the scale of the problem, tradi-

tional mapping techniques are augmented by semantic ob-

ject detection for reliable disambiguation. In addition, lo-

calized high definition maps (HD maps) can be used as a

prior for object detection.

3.2.1 Private Small Scale Maps

There are three primary reasons for the use of customized

small scale maps. The first reason is privacy where it is not

legally allowed to map the area, for example, private resi-

dential area. The second reason is that HD maps still do not

cover most of the areas. The third reason is the detection

of dynamic structures, that may differ from global measure-

ments. This is typically obtained by classical semi-dense

point cloud maps or landmark based maps. Local maps are

mainly obtained by methods described in the former section

(see Section 2).

3.2.2 Large Scale HD Maps

There are two types of HD maps namely Dense Semantic

Point Cloud Maps and Semantic Landmark based Maps.

Semantic Landmarked based maps are an intermediate so-

lution to dense semantic point cloud and likely to become

redundant.

Dense Semantic Point Cloud Maps: The former is the

high end version where all the semantics and dense point

cloud are available at high accuracy. Google and TomTom

adopt this strategy. As this is high end, it is expensive to

cover the entire world and needs large memory require-

ments. In this case, mapping is treated as a stronger cue than

perception. If there is good alignment, all the static objects

(road, lanes, curb, traffic signs) are obtained from the map

already and dynamic objects are obtained via some sort of

background subtraction. TomTom RoadDNA provides an

interface to align various sensors like LIDAR, cameras, etc.,

screenshot below of alignment of dense semantic 3D point

cloud to an image. They have mapped majority of Euro-

pean cities and they provide an accuracy of 10 cm assuming

a coarse location from GPS.

Landmark based Maps are based on semantic objects

instead of generic 3D point clouds. Thus it works primarily

for camera data. Mobileye and HERE follow this strategy.

In this method, object detection is leveraged to provide an

HD map and the accuracy is improved by aggregating over

several observations from different cars.

In case of a good localization, HD maps can be treated

as a dominant cue and semantic segmentation algorithm

greatly simplifies to be a refinement algorithm of priors ob-

tained by HD maps. In Figure 4, the semantic point cloud

alignment provides an accurate semantic segmentation for

static objects. Note, that it does not cover abstract objects

like sky. This would need a good confidence measure for

localization accuracy, typically some kind of re-projection

error is used. HD maps can also be used for validation

or post-processing the semantic segmentation to eliminate

false positives.

3.3. Challenges

Despite showing good performance, there are still chal-

lenges for Visual SLAM systems to overcome. We identify

algorithm and application related challenges.

3.3.1 Algorithm related challenges

• Pure Rotation: If the camera solely rotates, disparity

cannot be estimated between consecutive frames.

• Map Initialization: Most approaches start with random

initialization and convergence speed depends on the

camera movement in the initial phase which makes it

unreliable.

• Scale Ambiguity: Visual SLAM system based on a

single camera can only estimate the scene and tra-

jectory up to the overall scale. A global reference is

needed to solve the scale issue.

• Rolling shutter: Automotive cameras are mainly

rolling shutter. If the camera is intended to move at

high speed, e.g. for highway driving, rolling shutter

distortion occurs. If this is not handled in the algo-

rithm, it will diverge.

• Intelligent Loop-Closure Detection: State of the art ap-

proaches use image features to detect loop closures.

This is computationally expensive and heavily depends

on the robustness of the descriptor.
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Figure 5: Qualitative results: Example depth map predic-

tions on raw fisheye images. For each image, we show (a)

RGB Input (b) LIDAR Ground Truth (c) Predicted Depth

Map

3.3.2 Application related challenges

• Self-repairing Maps: Scene structure changes all the

time and need to handled by the mapping and localiza-

tion.

• Mapping on the car: Building a map in the car’s em-

bedded processor without having access to cloud in-

frastructure. It is particularly difficult for CNN based

training which needs large compute power.

• Unique signature for large scale areas: Maps for auto-

mated driving are very vast and similar structures oc-

cur typically which needs to be disambiguated using

semantics or global structure.

4. Deep Learning Opportunities

In this section, we explore the replacement of individual

blocks of Visual SLAM shown in Figure 2 for performance

improvements. Recently, most of the geometric vision tasks

are now led by deep learning models [27]. Hence, the fol-

lowing chapter describes their specific capacities and out-

lines the possibility of using those deep learning solutions

within Visual SLAM.

4.1. Depth Estimation

Localization or depth estimation is very critical for auto-

mated driving. The genesis of depth estimation using CNN

[18] has lead to a wide range of approaches and applications

in the depth estimation community. Depth estimation meth-

ods [21] mostly stand on architectures that resembles those

of semantic segmentation, which are often inspired from

classification-based networks. When the depth estimation is

supervised, the loss function usually reads as regression loss

[18, 39, 41, 59] w/wo regularization terms [70]. Interest-

ingly, [11] uses a ranking loss that penalizes the non relative

correspondence between predictions and ground truth while

[4] defines depth estimation as a classification problem. In

the case of unsupervised depth estimation a projection func-

tion between multiple views is carried (using the stereo-rig

constraints or estimating a motion between the views) and

the consistency of the prediction is assessed based on photo-

metric error [25, 28, 70, 61]. In table 2 we summarize three

Table 2: Raw Depth competition on KITTI [27] from [37].

Modality RMSE (0-80m)

Eigen et al. [18] supervised 7.156

Godard et al. [28] unsupervised 5.381

Kuznietsov et al. [37] semi-supervised 4.621

Figure 6: Illustration of dense optical flow from which

dense depth for structure from motion can be obtained

Table 3: Flow competition on KITTI [27] from [2]. (back-

ground bg, foreground fg)

bg fg bg+fg

Vogel et al. [63] 6.61 20.79 8.97

Menze et al. [42] 7.01 26.34 10.23

Behl et al. [2] 6.58 15.63 8.08

leading approaches on the KITTI [27] leader-board that all

based on CNNs. Hence, Depth estimation using neural net-

works and inherent applications are promising in the con-

text of Visual SLAM.

4.2. Optical Flow

CNN based optical flow have produced state of the art

results. We verify this with the leaderboard results in Table

3, all based on CNN. Motion detection [31] in particular is a

challenging problem because of the continuous camera mo-

tion along with the motion of independent objects. Moving

objects are the most critical in terms of avoiding fatalities

and enabling smooth maneuvering and braking of the car.

Motion cues can also enable generic object detection as it

is not possible to train for all possible object categories be-

forehand. Classical approaches in motion detection were

focused on geometry based approaches [57, 50, 49, 42, 65].

However, pure geometry based approaches have many lim-

itations, motion parallax issue is one such example. A re-

cent trend [56, 32, 17, 61, 24] for learning motion in videos

has emerged. Nonetheless, this trend was focused on pixel-

wise motion segmentation. Fragiadaki et. al. suggested a

method to segment moving objects [24] that uses a separate

proposal generation. However, proposal generation meth-

ods are computationally inefficient. Jain et. al. presented a

method for appearance and motion fusion in [32]. The work

focuses on generic object segmentation. It was not designed
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Figure 7: Semantic Segmentation on a fisheye automotive

camera

for static/moving vehicles classification. Tokmakov et. al.

[56] used a one-stream fully convolutional network with op-

tical flow input to estimate the motion type. The approach

works with either optical flow only or concatenated image

and flow as input. The concatenated input will not benefit

from the available pre-trained weights, as they were trained

on RGB only. Drayer et. al. [17] described a video seg-

mentation work that used tracked detections from R-CNN

denoted as tubes. This was followed by a spatio-temporal

graph to segment objects.

4.3. Feature Correspondence

There are CNN based feature correspondence tech-

niques. For example, a universal correspondence network

in [12] by making use of a spatial transformer to normal-

izer for affine transformations demonstrates state-of-the-art

results in various datasets. This is an example of feature

correspondence learning independent of the application in

which it is used. It is an open problem to learn feature cor-

respondence which is optimal for the later stages like bun-

dle adjustment. For instance, end-to-end learning of feature

matching could possibly learn diversity and distribution as

well instead of just picking the top high textured features.

4.4. Bundle Adjustment

There is no mature solution for CNN based bundle ad-

justment. There were a few initial attempts at it last year

which were published in CVPR, [58] tries to model pro-

jection constraints in a differentiable way. There are tech-

niques to jointly learn a pipeline like Visual SLAM with

a learnable part (for feature matching and depth) and a user

defined geometric part. For instance, when you jointly learn

the feature matching, it could possibly learn diversity and

distribution as well instead of just picking the top high tex-

tured features.

4.5. Semantic Segmentation

Semantic segmentation is targeted towards partitioning

the image into semantically meaningful parts with various

applications for that. It has been used in robotics [60, 6,

62, 36], medical applications [14, 71], augmented reality

[43], and most prominently automated driving [69, 53, 9,

Table 4: Semantic Competition on Cityscapes [15].

IoU Class IoU Category

Mapillary 82.0 91.2

SR-AIC 81.9 91.3

EFBNET 81.8 90.7

15]. There were mainly three subcategories of the work that

was developed.

The first [22, 23, 29] used patch-wise training to yield the

final classification. In [22] an image is fed into a Laplacian

pyramid, each scale is forwarded through a 3-stage network

to extract hierarchical features and patch-wise classification

is used. The output is post processed with a graph based

classical segmentation method. In [29] a deep network was

used for the final pixel-wise classification to alleviate any

post processing needed.

The second subcategory [40, 48, 1] was focused on end-

to-end learning of pixel-wise classification. It started with

the work in [40] that developed fully convolutional net-

works (FCN). The network learned heatmaps that was then

upsampled within the network using deconvolution to get

dense predictions. Unlike patch-wise trainings this method

uses the full image to infer dense predictions. In [48]

a deeper deconvolution network was developed, in which

stacked deconvolution and unpooling layers are used. In

Segnet [1] a similar approach was used where an encoder-

decoder architecture was deployed. In Figure 7 an example

of the semantic segmentation output of Segnet applied in an

automated driving setting is shown.

Finally, the work in [68, 22, 48, 10, 51, 52] focused

on multi-scale semantic segmentation. Initially in [22] the

scale issue was addressed by introducing multiple rescaled

versions of the image to the network. The skip-net architec-

ture in [40] was used to merge heatmaps from different res-

olutions. Since these architectures rely on downsampling

the image, loss of resolution can hurt the final prediction.

The work in [52] proposed a u-shaped architecture network

where feature maps from different initial layers are upsam-

pled and concatenated for the next layers. Another work in

[68] introduced dilated convolutions, which expanded the

receptive field without losing resolution based on the dila-

tion factor.

4.6. Camera pose estimation

Localization inside the map is a crucial part of SLAM,

where the position can be described by a 6-DOF camera

pose. Such poses can be recovered using feature-based

pipelines like SfM. Kendall et al. [33] trained a CNN to map

a single RGB image directly to a cameras orientation and

position in an end-to-end manner. Unlike methods based

on image databases, this proposed neural network, PoseNet,
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does not require memory linearly proportional to the size of

the scene. Furthermore PoseNet was shown to be robust to

difficult lighting, motion blur and different camera intrin-

sics where SIFT based registration fails.

Instead of using a direct regression of the 6-DOF cam-

era pose, Brachmann et al. [8] used a sequence of less

complex tasks. A first network learns to map local image

patches to corresponding positions in 3D scene space. Sub-

sequently a differentiable RANSAC [7] approach is used to

get a camera pose that aligns to the predicted scene coor-

dinates. While still being an end-to-end trainable pipeline,

this approach exploits geometrical constraints and achieves

superior results.

5. CNN Based Pipelines

Due to the nature of deep neural networks, the same net-

work architecture can be jointly learned for different high-

dimensional regression tasks. By sharing features for var-

ious tasks the efficiency and generalization is increased.

This is especially useful for real-time critical application

like automated driving.

In section 4 we investigated in detail the building block

technology of reconstructing a 3D scene with Visual SLAM

using CNN geometric vision tasks. This section unfolds

the closed relationship between the 3D scene and the basic

geometric tasks.

5.1. Joint Supervised Semantic SLAM

Tateno et al. [54] proposed a CNN to jointly learn se-

mantic segmentation and depth maps. Their approach inte-

grates a CNN based depth prediction with SLAM to over-

come traditional limitations of monocular reconstructions.

By fusing predicted semantic labels with the dense point

cloud, they obtain a semantically coherent scene reconstruc-

tion from a monocular view.

This approach combines efficient geometric building

blocks like depth estimation and semantic segmentation,

to improve the traditional pipeline of Visual SLAM (e.g.

PTAM, LSD-SLAM).

5.2. Joint Unsupervised SLAM using Optical Flow

Recently, [67] Yin et al. proposed a joint architecture

that simultaneously learns monocular depth, optical flow

and egomotion estimation based on video inputs using an

unsupervised manner. They achieve state of the art re-

sults for each vision task such as odometry using the KITTI

benchmark suite [27]. The approach removes the need of

data annotation for CNN based SLAM. The key idea is to

get use of the strong dependence of each geometric vision

task (depth, pose and optical flow) to design a joint loss

function that is purely based on consistency checks. There-

fore, a rigid decoder for depth and pose such as a non-rigid

Rigid-Structure 
Decoder              

None-Rigid-Motion 
Localizer             

Joint Loss
    

Depth, Pose Estimation                      Optical Flow

RGB

Figure 8: Joint Unsupervised Pipeline based on basic geo-

metric vision tasks: depth estimation, pose estimation and

optical flow [67]

Table 5: Absolute Trajectory Error (ATE) on KITTI odom-

etry dataset. The results of other baselines are taken from 8.

Sequence 09 Sequence 10

ORB-SLAM 0.014± 0.008 0.012± 0.011

Yin et al. 0.012±0.007 0.012±0.007

motion decoder for optical flow is designed. The loss is

defined in the following manner:

L =
∑∑

[Lrw + Lds + Lfw + Lfs + Lgc] (1)

Lrw (warping loss) and Lds (depth smoothness) denote

the rigid decoder. Lfw, Lfs and Lgc design the non-rigid

motion localizer (see Fig. 8). All could be directly derived

from the 3D scene purely based on consistency. The re-

sults on KITTI for odometry estimation are highlighted in

Table 5. The method outperforms ORB-SLAM on an auto-

motive scenario. The short outline emphasize the possibility

of using deep learning for SLAM.

6. Conclusion

CNNs have become the de facto approach for object de-

tection and semantic segmentation in automated driving.

They also show promising progress in geometric computer

vision algorithms like depth and flow estimation. However,

there is slow progress on CNN based Visual SLAM ap-

proaches. In this work, we provided an overview of Visual

SLAM for automated driving and surveyed possible oppor-

tunities for using CNNs in various building blocks. The au-

thors feel that this is an exciting area of research and hope

that this work will encourage further progress. Future re-

search is to prototype and evaluate the accuracy of the pro-

posed approaches.
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