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Abstract

Deep learning has become the standard model for ob-
Jject detection and recognition. Recently, there is progress
on using CNN models for geometric vision tasks like depth
estimation, optical flow prediction or motion segmentation.
However, Visual SLAM remains to be one of the areas of au-
tomated driving where CNNs are not mature for deployment
in commercial automated driving systems. In this paper, we
explore how deep learning can be used to replace parts of
the classical Visual SLAM pipeline. Firstly, we describe the
building blocks of Visual SLAM pipeline composed of stan-
dard geometric vision tasks. Then we provide an overview
of Visual SLAM use cases for automated driving based on
the authors’ experience in commercial deployment. Finally,
we discuss the opportunities of using Deep Learning to im-
prove upon state-of-the-art classical methods.

1. Introduction

Automated driving is a rapidly advancing application
area with a complex structure (see Fig.1) and lots of
progress in Deep Learning. There are two main paradigms
in this area:

1. The mediated perception approach which semantically
reasons the scene [26, 55] and determines the driving
decision based on it.

2. The behavior reflex approach that learns the driving
decision end-to-end [5, 66].

The behavior reflex methods can benefit from semantic rea-
soning of the environment. For example, an auxiliary loss
on semantic segmentation [66] was used with end-to-end
learning. On the other hand, semantic reasoning is a cen-
tral task in mediated perception, followed by the control

decision separately. Semantic reasoning of the scene in-
cludes self-localization, object detection, motion detection,
depth estimation, object tracking and others. CNNs (Con-
volutional Neural Networks) have demonstrated remarkable
leaps for various computer vision tasks especially for ob-
ject recognition. They are computationally intensive and
the main challenge is to design efficient regression losses.
In contrast Visual-SLAM approaches based on CNN with
state-of-the-art results are rare.

Since, the rise of the key-frame based SLAM [16], the
standard pipeline of feature-based Visual SLAM mainly
consists of the classical steps of a structure from motion
(SfM) algorithm [30]. In contrast, more recent approaches
like [20] consider the image directly. However, classical
approaches for monocular Visual SLAM share a major lim-
itation in map robustness. Indeed, scene changes or varying
illumination make the map less efficient if not obsolete for
reutilization. In [38] the authors try to learn an illumination-
robust feature for place recognition, but it is still limited to
some extent and does not face the scene change issue.

The map retraining is a long term subject in the com-
munity. Starting with the early approach of [3],[35] builds
a schedule to update the map when several sessions are at-
tempted. More recently [13] and [45] proposed two concur-
rent and promising approaches. In order to compare these
methods, the community lacks of a public dataset dedicated
to this topic again which authors could compete.

On the hardware side, very few Visual SLAM algorithms
in literature [46, 20] are suitable for low computational
power constraints of current automotive systems. In con-
trast, industrial systems such as [44] rely on server-client
architecture to carry the heavy computations.

Section 2 provides an overview of existing Visual SLAM
approaches. Section 3 discusses the use cases of Visual
SLAM in automated driving and the challenges faced by
classical approaches. In Section 4 opportunities are pre-
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Figure 1: Visual SLAM is inevitable within the complex structure of automated driving. This figure shows how local map
generation or vehicle pose estimation are essential for solving tasks within the perception based pipeline of automated driving.
SLAM must be used for environmental modeling. In general, SLAM could be done with different sensor types. However,
we focus on Visual SLAM, because its able to deal effectively with dense data, the cameras are widely distributed and they
have a large field of view with an acceptable range. Compared to all perception algorithms, where best performing methods
use CNNs, current state of the art Visual SLAM algorithms are not based on deep learning. We figure out CNN opportunities

especially for geometric tasks.

sented where parts of the fundamental pipeline can be re-
placed using CNN based approaches. Section 5 provides an
overview of CNN based pipelines. Finally, Section 6 con-
cludes the paper and provides potential future directions.

2. Visual SLAM approaches

The term Visual SLAM comprises all SLAM approaches
that take image-like data as input. Therefore, the main dif-
ference to SLAM systems based on other sensors is the
need to generate depth information from consecutive cam-
era frames (see Fig. 1).

There are two major state of the art methods, feature
based and direct Visual SLAM. The first one relies on de-
scriptive image features like SIFT or ORB whereas the sec-
ond one uses the image pixels directly. Being different in
the aspect of which image information is used, they share
the same fundamental processing pipeline, though.

2.1. Fundamental Pipeline

The fundamental pipeline for Visual SLAM is composed
of tracking, mapping, global optimization and relocaliza-
tion.

Tracking between consecutive camera images is utilized
in order to generate a local camera trajectory as well as
depth information. Usually, this tasks ends up in a non-
linear optimization problem. In most approaches, so called

key frames are used as a base for tracking. Once tracking
indicates that there is not enough overlap between the cur-
rent camera frame and the key frame, a new key frame is
created.

Mapping is the process of generating a map out of the
tracked sensor data. This step is where the main difference
between feature based and direct methods is located. The
first generates sparse feature maps whereas the second one
provides (semi-)dense point maps as output. In some of the
approaches, key frames including depth and scale informa-
tion are stored in a graph with the edges representing the
transformation between key frames.

A Global Optimization step is needed for correcting
the global map as tracking introduces a drift error into the
map. As it is computationally expensive, global optimiza-
tion is usually done from time to time only. The global op-
timization step relies on recognizing a place that has been
seen and mapped before and therefore detecting a loop clo-
sure. Based on this detection, all camera poses can be op-
timized. In some approaches, the 3D information is jointly
optimized.

Relocalization is the procedure of placing the sensor at
an unknown pose in the map and trying to estimate the pose.
This is usually done by comparing the current sensor data
with the map. A common approach is to use descriptive
image features.
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Figure 2: The Fundamental pipeline of Visual SLAM is composed of multiple geometric vision tasks including depth esti-
mation, optical flow and pose estimation. Those tasks have well known solutions based on CNNss in their individual domain.
In contrast, the overall Visual-SLAM is not dominated by Deep Learning.

2.2. Feature based SLAM

Feature based Visual SLAM methods utilize descriptive
image features for tracking and depth estimation. This re-
sults in sparse feature maps. Several approaches will be
explained in the following sections.

MonoSLAM by Davison et al. [16] is the first Visual
SLAM approach. It uses EKF-based feature tracking. There
is no loop closure detection and in order to achieve real-
time performance, only few feature points per frame a are
considered.

PTAM: The Parallel Tracking and Mapping (PTAM) al-
gorithm [34] extends the approach of Davison by paralleliz-
ing the feature point matching part in order to improve real-
time performance. For optimization, it uses bundle adjust-
ment (BA). Thus, it can handle many more feature points
which increases robustness.

ORB-SLAM [46] extends the functionality of PTAM by
adding loop closure detection and global pose graph opti-
mization. It also relies on the ORB feature descriptor which
is known to be robust while having low computational cost.

2.3. Direct SLAM

In contrast to feature based approaches, direct methods
do not rely on features for tracking but on the whole im-
age. This gives the chance to acquire a dense environment
model.

DTAM: Dense Tracking and Mapping (DTAM) [47] is
the first direct method published. While lacking features
like loop closure detection or global optimization, it intro-
duces tracking on key frames based on minimization of the
photometric error
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The mapping space is discretized into a 3D grid which lim-
its the maximum size of the map. Real-time performance is
achieved by performing computations on a GPU.

LSD-SLAM: Large-Scale Semi Dense SLAM (LSD-
SLAM) [20] is also based on the minimization of the pho-
tometric error. It extends the functionality to large scale
by building a pose frame graph and global optimization in-
cluding loop closure detection. Computational efficiency is
achieved by reducing the number of image pxiels used for
tracking to those showing a high intensity gradient.

DSO: In the publication of Direct Sparse Odometry
(DSO) [19], the authors extend the minimization model of
LSD-SLAM by taking the geometric error into the account
as well as exposure time and lens distortion
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This leads to a more robust estimation of the trajectory. Al-
though being a direct method, the map generated is sparse
in order to achieve real-time performance. Loop closure
detection and global optimization is not an explicit part of
the approach but can be done in the same way as for LSD-
SLAM.

2.4. Benchmarks on KITTI

Table 1 describes the RMSE (degree per 100 m) for rota-
tional 7 and RMSE (%) translational error r..;. The results
are taken from Wang et al. [64]. The data refers to the mean
taken from all ten sequences (100 m to 800 m). For these au-
tomated driving scenarios, DSO yields the most promising
results. However, Wang et al. [64] claimed a bigger error
for the monocular implementation on what we focus. Fig. 3
shows the comparison for stereo versus monocular SLAM
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Table 1: Qualitative results on the KITTI [27] [64].

DSO ORB2 LSD
Sequence | tre \ Trel trel \ Trel trel \ Trel
00 0.84 | 0.26 | 0.83 | 0.29 | 1.09 | 0.42
01 143 | 0.09 | 1.38 | 0.20 | 2.13 | 0.37
02 0.78 | 0.21 | 0.81 | 0.28 | 1.09 | 0.37
10 049 | 0.18 | 0.58 | 0.28 | 0.75 | 0.34

mean | 0.84 [ 0.20 [ 0.81 [ 0.26 | 1.14 [ 0.40 |
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Figure 3: Weakness of traditional monocular Visual SLAM
taken from [64]. The figure shows the qualitative results
on KITTI [27] trace 00. The left outlines mono SLAM ap-
proaches, the right shows stereo DSO.

using DSO and ORB. Although the stereo results are ac-
ceptable, the monocular results are weak and unacceptable
for automated driving. From that we derive lots of potential
using deep learning techniques to improve.

3. Use Cases and Challenges

Use cases for Visual SLAM in automated driving are
manifold. A reliable and fast mapping and localization of
the car is needed for almost any driving scenario. Due to
the high resolution of cameras compared to other sensors
like RADAR or LIDAR, situations that require a detailed
knowledge about the environment or generate ambiguous
signals from other sensors are dedicated for the application
of Visual SLAM. Thus, we identify the most relevant use
cases to be parking, highway driving and urban driving.

3.1. Driving Scenarios

For certain driving scenarios, application of Visual
SLAM is crucial. In the following section we describe park-
ing, highway and urban driving in detail.

3.1.1 Parking

Main requirement of parking is the need of an accurate en-
vironment map in the near vicinity of the car while driv-
ing at low speed. Most frequent scenarios are parking on
a parking deck, on a public parking lot and in the home
zone. Whereas the first two require small scale mapping in

an unknown environment, parking in an home zone is ded-
icated for the application of SLAM. First, the car learns a
trajectory in the home zone in parallel to recording an ini-
tial map. Once, the car returns to the home zone, the map is
loaded, relocalization takes place and the car can move on
the learned trajectory while updating the map.

Regarding types of maps, both feature maps and dense
point maps are suitable for this use case. Depending on the
type of features used, feature maps might be more suitable
for relocalization whereas dense point maps provide more
information about the environment.

3.1.2 Highway Driving

The highway driving scenario is a limited, but important
use case for Visual SLAM. Due to the higher speed, com-
pared to parking or urban driving, it gets challenging to run
Visual SLAM approaches in real-time, since a high frame
rate from at least 30fps is needed. On the other hand, the
environment geometry is less complex such as surrounding
objects are parallel arranged. Artal et al. [46] (see section
2.2) have shown on the KITTI benchmark suite [27] their
highest accuracy on stream four, which is a pure highway
scene. The method achieves a RMSE of 1.79 m, which is far
below the average over all scenes. It already achieved high
accuracy of sparse SLAM techniques for highway driving.
There is not much space for improvements using deep learn-
ing. However, due to the required high frame rate, an sparse
CNN based SLAM technique might be able to outperform
state of the art approaches in terms of efficiency.

3.1.3 Urban Driving

Automated driving within the inner city is extreme chal-
lenging. Compared to Highway Driving, the environment
is much more complex and varying, compared to the park-
ing scenario, the environment includes lots of dynamic ob-
jects that have to be detected actively or passively during 3D
reconstruction and localization. In the last section, we de-
scribed the high performance of ORB-SLAM [46] (sparse
and direct) on a KITTI highway trace. In contrast, their
results on urban scenarios are imprecise for large traces
up to an RMSE of 46.36 m (trace 8). This gives a slight
imagination how challenging it is and that we may need a
dense reconstruction within such an use case. On the other
hand, DSO-SLAM [19], a sparse direct method yields much
higher performance than ORB-SLAM even on large urban
dataset. Stereo-DSO is ranked on 14th for KITTI odometry
challenge. Therefore, it ranks higher than the semi-dense
direct LSD Stereo SLAM [20] (27th). Hence, not only the
number of reconstructed points, even the ability to recon-
sider static points with stability against lots of dynamic ob-

OThe ranking refers to the date of submission the 20th of march 2018.
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Figure 4: Example of High Definition (HD) map from Tom-
Tom RoadDNA (Reproduced with permission of the copy-
right owner)

jects within the scene is a key strategy. Such intelligent
tasks could be improved by CNNs that learn good areas to
reconstruct with the aid of a large scaled dataset.

3.2. Types of Maps

Mapping is one of the key pillars of automated driv-
ing. The first reliable demonstrations of automated driv-
ing by Google were primarily reliant on localization to pre-
mapped areas. Because of the scale of the problem, tradi-
tional mapping techniques are augmented by semantic ob-
ject detection for reliable disambiguation. In addition, lo-
calized high definition maps (HD maps) can be used as a
prior for object detection.

3.2.1 Private Small Scale Maps

There are three primary reasons for the use of customized
small scale maps. The first reason is privacy where it is not
legally allowed to map the area, for example, private resi-
dential area. The second reason is that HD maps still do not
cover most of the areas. The third reason is the detection
of dynamic structures, that may differ from global measure-
ments. This is typically obtained by classical semi-dense
point cloud maps or landmark based maps. Local maps are
mainly obtained by methods described in the former section
(see Section 2).

3.2.2 Large Scale HD Maps

There are two types of HD maps namely Dense Semantic
Point Cloud Maps and Semantic Landmark based Maps.
Semantic Landmarked based maps are an intermediate so-
lution to dense semantic point cloud and likely to become
redundant.

Dense Semantic Point Cloud Maps: The former is the
high end version where all the semantics and dense point
cloud are available at high accuracy. Google and TomTom
adopt this strategy. As this is high end, it is expensive to
cover the entire world and needs large memory require-
ments. In this case, mapping is treated as a stronger cue than
perception. If there is good alignment, all the static objects
(road, lanes, curb, traffic signs) are obtained from the map

already and dynamic objects are obtained via some sort of
background subtraction. TomTom RoadDNA provides an
interface to align various sensors like LIDAR, cameras, etc.,
screenshot below of alignment of dense semantic 3D point
cloud to an image. They have mapped majority of Euro-
pean cities and they provide an accuracy of 10 cm assuming
a coarse location from GPS.

Landmark based Maps are based on semantic objects
instead of generic 3D point clouds. Thus it works primarily
for camera data. Mobileye and HERE follow this strategy.
In this method, object detection is leveraged to provide an
HD map and the accuracy is improved by aggregating over
several observations from different cars.

In case of a good localization, HD maps can be treated
as a dominant cue and semantic segmentation algorithm
greatly simplifies to be a refinement algorithm of priors ob-
tained by HD maps. In Figure 4, the semantic point cloud
alignment provides an accurate semantic segmentation for
static objects. Note, that it does not cover abstract objects
like sky. This would need a good confidence measure for
localization accuracy, typically some kind of re-projection
error is used. HD maps can also be used for validation
or post-processing the semantic segmentation to eliminate
false positives.

3.3. Challenges

Despite showing good performance, there are still chal-
lenges for Visual SLAM systems to overcome. We identify
algorithm and application related challenges.

3.3.1 Algorithm related challenges

e Pure Rotation: If the camera solely rotates, disparity
cannot be estimated between consecutive frames.

e Map Initialization: Most approaches start with random
initialization and convergence speed depends on the
camera movement in the initial phase which makes it
unreliable.

e Scale Ambiguity: Visual SLAM system based on a
single camera can only estimate the scene and tra-
jectory up to the overall scale. A global reference is
needed to solve the scale issue.

e Rolling shutter: Automotive cameras are mainly
rolling shutter. If the camera is intended to move at
high speed, e.g. for highway driving, rolling shutter
distortion occurs. If this is not handled in the algo-
rithm, it will diverge.

o Intelligent Loop-Closure Detection: State of the art ap-
proaches use image features to detect loop closures.
This is computationally expensive and heavily depends
on the robustness of the descriptor.
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Figure 5: Qualitative results: Example depth map predic-
tions on raw fisheye images. For each image, we show (a)
RGB Input (b) LIDAR Ground Truth (c) Predicted Depth
Map

3.3.2 Application related challenges

e Self-repairing Maps: Scene structure changes all the
time and need to handled by the mapping and localiza-
tion.

e Mapping on the car: Building a map in the car’s em-
bedded processor without having access to cloud in-
frastructure. It is particularly difficult for CNN based
training which needs large compute power.

e Unique signature for large scale areas: Maps for auto-
mated driving are very vast and similar structures oc-
cur typically which needs to be disambiguated using
semantics or global structure.

4. Deep Learning Opportunities

In this section, we explore the replacement of individual
blocks of Visual SLAM shown in Figure 2 for performance
improvements. Recently, most of the geometric vision tasks
are now led by deep learning models [27]. Hence, the fol-
lowing chapter describes their specific capacities and out-
lines the possibility of using those deep learning solutions
within Visual SLAM.

4.1. Depth Estimation

Localization or depth estimation is very critical for auto-
mated driving. The genesis of depth estimation using CNN
[18] has lead to a wide range of approaches and applications
in the depth estimation community. Depth estimation meth-
ods [21] mostly stand on architectures that resembles those
of semantic segmentation, which are often inspired from
classification-based networks. When the depth estimation is
supervised, the loss function usually reads as regression loss
[18, 39, 41, 59] w/wo regularization terms [70]. Interest-
ingly, [1 1] uses a ranking loss that penalizes the non relative
correspondence between predictions and ground truth while
[4] defines depth estimation as a classification problem. In
the case of unsupervised depth estimation a projection func-
tion between multiple views is carried (using the stereo-rig
constraints or estimating a motion between the views) and
the consistency of the prediction is assessed based on photo-
metric error [25, 28, 70, 61]. In table 2 we summarize three

Table 2: Raw Depth competition on KITTI [27] from [37].

Modality RMSE (0-80m)
Eigen et al. [18] supervised 7.156
Godard et al. [28] unsupervised 5.381
Kuznietsov et al. [37] | semi-supervised 4.621

Figure 6: Illustration of dense optical flow from which
dense depth for structure from motion can be obtained

Table 3: Flow competition on KITTI [27] from [2]. (back-
ground bg, foreground fg)

bg fg bg+fg

Vogel et al. [63] | 6.61 | 20.79 | 8.97

Menze et al. [42] | 7.01 | 26.34 | 10.23
Behl et al. [2] 6.58 | 15.63 | 8.08

leading approaches on the KITTI [27] leader-board that all
based on CNNs. Hence, Depth estimation using neural net-
works and inherent applications are promising in the con-
text of Visual SLAM.

4.2. Optical Flow

CNN based optical flow have produced state of the art
results. We verify this with the leaderboard results in Table
3, all based on CNN. Motion detection [3 1] in particular is a
challenging problem because of the continuous camera mo-
tion along with the motion of independent objects. Moving
objects are the most critical in terms of avoiding fatalities
and enabling smooth maneuvering and braking of the car.
Motion cues can also enable generic object detection as it
is not possible to train for all possible object categories be-
forehand. Classical approaches in motion detection were
focused on geometry based approaches [57, 50, 49, 42, 65].
However, pure geometry based approaches have many lim-
itations, motion parallax issue is one such example. A re-
cent trend [56, 32, 17, 61, 24] for learning motion in videos
has emerged. Nonetheless, this trend was focused on pixel-
wise motion segmentation. Fragiadaki et. al. suggested a
method to segment moving objects [24] that uses a separate
proposal generation. However, proposal generation meth-
ods are computationally inefficient. Jain et. al. presented a
method for appearance and motion fusion in [32]. The work
focuses on generic object segmentation. It was not designed
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Figure 7: Semantic Segmentation on a fisheye automotive
camera

for static/moving vehicles classification. Tokmakov et. al.
[56] used a one-stream fully convolutional network with op-
tical flow input to estimate the motion type. The approach
works with either optical flow only or concatenated image
and flow as input. The concatenated input will not benefit
from the available pre-trained weights, as they were trained
on RGB only. Drayer et. al. [17] described a video seg-
mentation work that used tracked detections from R-CNN
denoted as tubes. This was followed by a spatio-temporal
graph to segment objects.

4.3. Feature Correspondence

There are CNN based feature correspondence tech-
niques. For example, a universal correspondence network
in [12] by making use of a spatial transformer to normal-
izer for affine transformations demonstrates state-of-the-art
results in various datasets. This is an example of feature
correspondence learning independent of the application in
which it is used. It is an open problem to learn feature cor-
respondence which is optimal for the later stages like bun-
dle adjustment. For instance, end-to-end learning of feature
matching could possibly learn diversity and distribution as
well instead of just picking the top high textured features.

4.4. Bundle Adjustment

There is no mature solution for CNN based bundle ad-
justment. There were a few initial attempts at it last year
which were published in CVPR, [58] tries to model pro-
jection constraints in a differentiable way. There are tech-
niques to jointly learn a pipeline like Visual SLAM with
a learnable part (for feature matching and depth) and a user
defined geometric part. For instance, when you jointly learn
the feature matching, it could possibly learn diversity and
distribution as well instead of just picking the top high tex-
tured features.

4.5. Semantic Segmentation

Semantic segmentation is targeted towards partitioning
the image into semantically meaningful parts with various
applications for that. It has been used in robotics [60, 6,

, 36], medical applications [14, 71], augmented reality
[43], and most prominently automated driving [69, 53, 9,

Table 4: Semantic Competition on Cityscapes [15].

IoU Class | IoU Category
Mapillary 82.0 91.2
SR-AIC 81.9 91.3
EFBNET 81.8 90.7

]. There were mainly three subcategories of the work that
was developed.

The first [22, 23, 29] used patch-wise training to yield the
final classification. In [22] an image is fed into a Laplacian
pyramid, each scale is forwarded through a 3-stage network
to extract hierarchical features and patch-wise classification
is used. The output is post processed with a graph based
classical segmentation method. In [29] a deep network was
used for the final pixel-wise classification to alleviate any
post processing needed.

The second subcategory [40, 48, 1] was focused on end-
to-end learning of pixel-wise classification. It started with
the work in [40] that developed fully convolutional net-
works (FCN). The network learned heatmaps that was then
upsampled within the network using deconvolution to get
dense predictions. Unlike patch-wise trainings this method
uses the full image to infer dense predictions. In [48]
a deeper deconvolution network was developed, in which
stacked deconvolution and unpooling layers are used. In
Segnet [1] a similar approach was used where an encoder-
decoder architecture was deployed. In Figure 7 an example
of the semantic segmentation output of Segnet applied in an
automated driving setting is shown.

Finally, the work in [68, 22, 48, 10, 51, 52] focused
on multi-scale semantic segmentation. Initially in [22] the
scale issue was addressed by introducing multiple rescaled
versions of the image to the network. The skip-net architec-
ture in [40] was used to merge heatmaps from different res-
olutions. Since these architectures rely on downsampling
the image, loss of resolution can hurt the final prediction.
The work in [52] proposed a u-shaped architecture network
where feature maps from different initial layers are upsam-
pled and concatenated for the next layers. Another work in
[68] introduced dilated convolutions, which expanded the
receptive field without losing resolution based on the dila-
tion factor.

4.6. Camera pose estimation

Localization inside the map is a crucial part of SLAM,
where the position can be described by a 6-DOF camera
pose. Such poses can be recovered using feature-based
pipelines like SfM. Kendall et al. [33] trained a CNN to map
a single RGB image directly to a cameras orientation and
position in an end-to-end manner. Unlike methods based
on image databases, this proposed neural network, PoseNet,
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does not require memory linearly proportional to the size of
the scene. Furthermore PoseNet was shown to be robust to
difficult lighting, motion blur and different camera intrin-
sics where SIFT based registration fails.

Instead of using a direct regression of the 6-DOF cam-
era pose, Brachmann et al. [8] used a sequence of less
complex tasks. A first network learns to map local image
patches to corresponding positions in 3D scene space. Sub-
sequently a differentiable RANSAC [7] approach is used to
get a camera pose that aligns to the predicted scene coor-
dinates. While still being an end-to-end trainable pipeline,
this approach exploits geometrical constraints and achieves
superior results.

5. CNN Based Pipelines

Due to the nature of deep neural networks, the same net-
work architecture can be jointly learned for different high-
dimensional regression tasks. By sharing features for var-
ious tasks the efficiency and generalization is increased.
This is especially useful for real-time critical application
like automated driving.

In section 4 we investigated in detail the building block
technology of reconstructing a 3D scene with Visual SLAM
using CNN geometric vision tasks. This section unfolds
the closed relationship between the 3D scene and the basic
geometric tasks.

5.1. Joint Supervised Semantic SLAM

Tateno et al. [54] proposed a CNN to jointly learn se-
mantic segmentation and depth maps. Their approach inte-
grates a CNN based depth prediction with SLAM to over-
come traditional limitations of monocular reconstructions.
By fusing predicted semantic labels with the dense point
cloud, they obtain a semantically coherent scene reconstruc-
tion from a monocular view.

This approach combines efficient geometric building
blocks like depth estimation and semantic segmentation,
to improve the traditional pipeline of Visual SLAM (e.g.
PTAM, LSD-SLAM).

5.2. Joint Unsupervised SLAM using Optical Flow

Recently, [67] Yin et al. proposed a joint architecture
that simultaneously learns monocular depth, optical flow
and egomotion estimation based on video inputs using an
unsupervised manner. They achieve state of the art re-
sults for each vision task such as odometry using the KITTI
benchmark suite [27]. The approach removes the need of
data annotation for CNN based SLAM. The key idea is to
get use of the strong dependence of each geometric vision
task (depth, pose and optical flow) to design a joint loss
function that is purely based on consistency checks. There-
fore, a rigid decoder for depth and pose such as a non-rigid

Depth, Pose Estimation Optical Flow

Joint Loss

Rigid-Structure
Decoder

None-Rigid-Motion
Localizer

Figure 8: Joint Unsupervised Pipeline based on basic geo-
metric vision tasks: depth estimation, pose estimation and
optical flow [67]

Table 5: Absolute Trajectory Error (ATE) on KITTI odom-
etry dataset. The results of other baselines are taken from 8.

Sequence 09 Sequence 10
ORB-SLAM | 0.014 £0.008 | 0.012 £0.011
[ Yinetal. [ 0.012+0.007 [ 0.012+0.007 |

motion decoder for optical flow is designed. The loss is
defined in the following manner:

£:ZZ[ETM+£ds+£fw+£fs+£gc] (D

L, (Warping loss) and L4, (depth smoothness) denote
the rigid decoder. Ly, Ls and L. design the non-rigid
motion localizer (see Fig. 8). All could be directly derived
from the 3D scene purely based on consistency. The re-
sults on KITTI for odometry estimation are highlighted in
Table 5. The method outperforms ORB-SLAM on an auto-
motive scenario. The short outline emphasize the possibility
of using deep learning for SLAM.

6. Conclusion

CNNs have become the de facto approach for object de-
tection and semantic segmentation in automated driving.
They also show promising progress in geometric computer
vision algorithms like depth and flow estimation. However,
there is slow progress on CNN based Visual SLAM ap-
proaches. In this work, we provided an overview of Visual
SLAM for automated driving and surveyed possible oppor-
tunities for using CNNs in various building blocks. The au-
thors feel that this is an exciting area of research and hope
that this work will encourage further progress. Future re-
search is to prototype and evaluate the accuracy of the pro-
posed approaches.
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