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Abstract
In this paper, we aim to understand the semantics and

3D structure of a scene from a single depth image. Recent

deep neural networks based methods aim to simultaneously

learn object class labels and infer the 3D shape of a scene

represented by a large voxel grid. However, individual ob-

jects within the scene are usually only represented by a few

voxels leading to a loss of geometric detail. In addition, sig-

nificant computational and memory resources are required

to process the large scale voxel grid of a whole scene. To

address this, we propose an efficient and holistic pipeline,

3R-Depth, to simultaneously learn the semantics and struc-

ture of a scene from a single depth image. Our key idea is

to deeply fuse an efficient 3D shape estimator with existing

recognition (e.g., ResNets) and segmentation (e.g., Mask R-

CNN) techniques. Object level semantics and latent feature

maps are extracted and then fed to a shape estimator to ex-

tract the 3D shape. Extensive experiments are conducted

on large-scale synthesized indoor scene datasets, quantita-

tively and qualitatively demonstrating the merits and supe-

rior performance of 3R-Depth.

1. Introduction

To enable an intelligent machine to navigate within and

interact with the world, it is essential to understand the

3D structure and semantic meanings of its surrounding en-

vironment. With the widespread availability of off-the-

shelf RGB-D sensors such as Microsoft Kinect and Google

Tango, high-quality depth images of the environment can be

acquired easily. A fundamental and open question is how to

learn both the 3D geometry and semantic annotation of the

entire scene.

Classic approaches address the above question in two

separate pipelines. (1) Early methods in [6][17] only con-

sider semantic segmentation for visible surfaces, ignoring

the 3D geometry of the environment. (2) The approaches in

[3][15] simply recover the 3D structure without extracting

the semantic meanings. Basically, both pipelines rely on

hand-crafted image feature extraction and matching. Fur-

thermore, classic techniques for 3D structure recovery usu-
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ally require multiple images scanned from different view-

ing angles, which is inefficient and even infeasible in many

real-world scenarios.

With the advancement of deep neural nets, recent works

such as SSCNet [19] and ScanComplete [2] are among the

first work to simultaneously learn semantic labels and re-

cover the 3D geometry for a scene.

SSCNet [19] takes a single depth view as the input, and

predicts a completed voxel grid of the scene, with each

voxel labeled with a semantic class. Although achieving

impressive results, it has two drawbacks. (1) Since the in-

put partial scene is represented by a 240× 144× 240 voxel

grid, and the output complete scene is a small 60× 36× 60
voxel grid, many individual objects, e.g. chairs or tables,

only consist of a few voxels. As a result, fine geometric de-

tails are unlikely to be recovered in the scene. (2) Since the

majority of the scene tends to be unoccupied, most of the

input and output voxel grid are ‘0’. Therefore, it is a waste

of computation and memory to learn the whole sparse voxel

grid.

Dai et al. introduce ScanComplete [2] to simultaneously

complete 3D structure and infer per-voxel semantic labels

for a large-scale scene. A sequence of depth images along a

trajectory are firstly fused and voxelized, generating a large

voxel grid, e.g., 1480 × 1230 × 64, to represent the partial

scene. To curtail the high computation and memory costs

incurred by the partial large voxel grid, ScanComplete uni-

formly samples subvolumes, e.g., 32 × 32 × 32 subgrids,

from the large voxel grid, and then select meaningful sub-

volumes, e.g., containing chairs, tables, to train a network.

While this divide-and-conquer strategy is promising to deal

with large-scale semantic scene completion, it is limited by

the following reasons. (1) Since the input large voxel grid

is manually fused from a sequence of depth images, a large

amount of pre-processing work is required. In addition, the

created voxel grid would inevitably consume large memory.

(2) Before training the network, each sampled subvolume is

manually filtered by checking whether it contains interest-

ing information or not. (3) Similar to SSCNet, geometric

details of individual objects are unlikely to be recovered, as

each object may consist of few voxels.

To overcome the limitations of the prior art for se-
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Figure 1: Flow chart of 3R-Depth.

mantic scene completion, we introduce a novel, effi-

cient and holistic pipeline, named 3R-Depth, to simul-

taneously learn the semantics and structure of a scene.

As shown in Figure 1, 3R-Depth is an end-to-end train-

able framework which simultaneously completes three

tasks: Recognition, Reorganization/Segmentation, and

Reconstruction [14] from a single Depth image. In par-

ticular, 3R-Depth takes a raw depth image as the input and

then simultaneously segments and classifies each object in

the scene, after which the segmented objects, which are also

recognized, are reconstructed with full and fixed-size 3D

shapes. In this way, scale issues are sidestepped.

By drawing on the powerful recognition techniques such

as ResNets [9], the state of the art segmentation approaches

such as Mask-RCNN [7], and the reconstruction methods

such as 3D-RecGAN [24], our 3R-Depth is designed with

the following features and advantages over existing ap-

proaches:

• 3R-Depth only takes a single raw depth image as the

input, which does not require pre-processing and is

also memory and computation efficient.

• 3R-Depth firstly learns accurate semantics from the

depth image, and then estimates a fixed and high res-

olution 3D shape, i.e., a 64 × 64 × 64 voxel grid, for

each object in the scene. Geometric details of indi-

vidual objects can be well-recovered, irrespective of

different sizes of objects in the raw depth input.

• The reconstructed 3D object shapes can be easily as-

sembled to form a 3D scene, according to the corre-

sponding depth values, thus recovering the 3D scene

structure with semantic labels.

2. Related Work

(1) Recognition and Segmentation. Recent deep neu-

ral networks have led to a series of breakthroughs in im-

age recognition, from the early AlexNet [11] and VGGNet

[18], to the recent ResNet [8] and DenseNet [10]. These

deep models greatly benefit many related vision tasks in-

cluding object detection and segmentation. Both Fast/Faster

R-CNN [4][16] and Fully Convolutional Network (FCN)

[13] emerge as powerful baseline systems for object de-

tection and semantic segmentation accordingly. Building

on R-CNN [5] and Fast R-CNN [4], Faster R-CNN [16]

applies attention mechanism with a Region Proposal Net-

work (RPN) and then achieves leading performance in ob-

ject detection. The most recent Mask R-CNN [7] proposes

an RoIAlign operation together with an independent subnet-

work to predict a binary mask for each RoI (Region of Inter-

est) on Faster R-CNN, achieving the state of the art perfor-

mance in instance segmentation task. So far, Mask R-CNN

is able to simultaneously predict an accurate object class

label and a pixel-level mask for each instance in the input

RGB image. This powerful framework naturally becomes

a fundamental component for large scene understanding in-

cluding semantics extraction and 3D structure recovering.

(2) 3D Object Reconstruction. 3D object shapes can be

recovered from either a single depth/RGB image or multi-

ple images. Recent deep learning approaches achieve com-

pelling results in single depth view reconstruction. 3D

ShapeNets [22] is the first work that uses neural networks to

infer 3D shapes from a single depth view. Firman et al. [3]

propose a random decision forest to estimate unknown vox-

els. Varley et al. [21] propose a neural network to recover

the complete 3D shape from a single depth view. 3D-EPN

[1] firstly predicts a 323 object shape and then synthesizes

a higher resolution shape from a large shape database. 3D-

PRNN [25] infers a few number of shape primitives using

RNNs. Yang et al. [24][23] incorporate adversarial learning

for 3D shape estimation from a single depth view. Although

existing work can achieve encouraging results, they only

predict the shape of a single clean object without consider-

ing the semantics and 3D structure of a large scale scene.

(3) Semantic Scene Estimation. SSCNet [19] is among

the first work to simultaneously predict semantics and 3D

shapes using deep neural nets. The recent ScanComplete [2]

takes divide-and-conquer strategy to complete large scale

volumetric 3D scene. Tulsiani et al. [20] recently propose

a network to predict both object shape together with ori-

entation and the scene layout from an RGB image, but their

network does not simultaneously predict object semantic la-

bels. Besides, in their network, the object bounding box is

separately extracted using existing algorithms.
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3. 3R-Depth

Our 3R-Depth is a general framework towards 3D scene

understanding. In this section, 3R-Depth is instantiated by

integrating the state of the art techniques as plug-ins for

each component. In this way, it is trivial to drop in alter-

native or improved components.

3.1. Feature Extraction

Given a single depth image as the input, this module aims

to extract the latent features from the scene for subsequent

recognition, segmentation and reconstruction. In our 3R-

Depth, the ResNet50 architecture [9] is applied, although

other existing architecture such as VGG and FPN are also

applicable. In particular, the input depth image has the res-

olution of 640×480, which is the same as the depth images

generated by Microsoft Kinect V2, while the output is a ten-

sor of latent feature maps.

3.2. Classification and Segmentation

Given the learnt latent feature maps from section 3.1,

the two tasks of classification and segmentation are simul-

taneously conducted using a separate subnetwork. A large

number of candidate bounding boxes are firstly proposed,

after which the size and location of each bounding box are

optimized or filtered given the supervision of ground truth

labels through the separate network. Instance-level segmen-

tation is further learnt using another mask-branch network

given ground truth supervision. In our 3R-Depth, the ex-

isting Mask-RCNN architecture [7] for instance-level clas-

sification and segmentation is applied, although the recent

PANet [12] is also applicable. The output of the recognition

and segmentation modules are a series of bounding boxes

and binary masks, which are associated with class labels, on

the top of input feature maps. Each of the labeled bounding

box and mask corresponds to a specific object in the input

depth image.

3.3. Reconstruction

Given the learnt latent feature maps from section 3.1, and

the estimated bounding boxes and masks from section 3.2,

this module aims to reconstruct the 3D shape for each seg-

mented instance. We firstly multiply the latent feature maps

by each of the binary masks, which results in the feature

maps for each object, and then the learnt class label for each

instance from section 3.2 is concatenated with the masked

feature maps. The resulted object-level feature maps are

directly fed into the reconstruction module to infer the cor-

responding 3D shapes. In our 3R-Depth, the 3D decoder of

3D-RecGAN [24] is leveraged to estimate 3D shapes with a

resolution of 64× 64× 64 voxel grids.

3.4. Assembler

Given the learnt 3D object shapes from section 3.3 and

the estimated bounding boxes and masks from section 3.2,

the corresponding depth values of each object are directly

retrieved from the input depth image. The reconstructed ob-

ject shapes are rescaled and assembled back to the scene, re-

covering the 3D scene semantics and structure accordingly.

4. Evaluation

4.1. Data Synthesize

To the best of our knowledge, there is no existing dataset

that suits our 3R-Depth for evaluation. Therefore, we syn-

thesize our own dataset based on the large-scale SUNCG

indoor scene repository [19]. We render approximately 1.2

million views from randomly selected 25 thousand scenes

with the provided toolbox. Similar to [19], we exclude bad

viewpoints from rendered views. Specifically, the rendered

images are filtered by the following criteria: (1) object area

should be larger than 10% of the image, and (2) no larger

than 20% of any object is occluded. Finally, 57 thousand

valid views are generated in total, with a 8:2 split for train-

ing and testing. We select 15 common object categories as

classes of interest.

4.2. Metrics

Segmentation performance is evaluated by mean aver-

age precision (AP), averaged for Intersection of Union, IoU

∈ [0.5 : 0.05 : 0.95] (COCO’s standard metric) [7]. 3D

reconstruction is evaluated by the mean IoU between pre-

dicted 3D voxel grids and their ground truth. The IoU for

an individual voxel grid is formally defined in [24].

4.3. Results

Table 1 shows per category mask prediction AP scores

and reconstruction IoU scores, while Figure 2 shows the

qualitative results. As to mask prediction, our integration

of Mask-RCNN achieves superior accuracy on depth im-

ages, which is consistent with its outstanding performance

for mask prediction on RGB images in its original paper.

As to individual 3D object reconstruction, the 3D shape es-

timator also achieves satisfactory performance. However,

we observe that the 3D shape estimator performs better on

regular categories, e.g., toilet, bathtub, than irregular ones.

5. Conclusion

In this paper, an efficient and holistic pipeline is pro-

posed for 3D scene understanding from a single depth im-

age. In this pipeline, instance level semantics are accurately

extracted through the integration of ResNets and Mask-

RCNN, while the high resolution 3D instance shape is in-

ferred with an efficient 3D decoder which is deeply fused

with recognition and segmentation nets. After all individual

objects have been classified, segmented and reconstructed,

they are assembled together according to the available depth

values. Our approach is extensively evaluated on the large-
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Table 1: Per-category mask AP and reconstruction IoU on SUNCG dataset.

class toilet chair table sofa bed shelves night stand lamp desk cabinet sink bathtub bookshelf dresser counter mean

maskAP 0.479 0.585 0.589 0.875 0.808 0.526 0.620 0.674 0.698 0.737 0.832 0.934 0.376 0.881 0.683 0.686

IoU(643) 0.811 0.580 0.294 0.678 0.677 0.668 0.665 0.478 0.550 0.708 0.867 0.860 0.579 0.673 0.744 0.656

input depth image predicted class labels and 

masks for object instance 

predicted 3D shapes 

for objects

assembled structure 

for the 3D scene

ground truth structure 

for the 3D scene

Figure 2: Qualitative results of our 3R-Depth.

scale SUNCG dataset and is able to recover high-quality 3D

scene semantics and structures.
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