Attribute Augmented Convolutional Neural Network for Face Hallucination Supplementary Material

Cheng-Han Lee¹ Kaipeng Zhang¹ Hu-Cheng Lee¹ Chia-Wen Cheng² Winston Hsu¹ ¹National Taiwan University ²The University of Texas at Austin

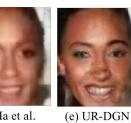
¹{r05922077, r05944047, r05922174, whsu}@ntu.edu.tw ²cwcheng@cs.utexas.edu

1. Overview

This supplementary material shows more visual results of comparing with state-of-the-art methods on both global and local regions. Fig. 1 shows comparison with the state-of-the-art methods on hallucination global test dataset. Fig. 2 shows comparison with the state-of-the-art methods on hallucination local test dataset which is eyeglasses on "eye" part. Fig. 3 shows comparison with the state-of-the-art methods on hallucination local test dataset which is goatee on "mouth & nose" part. Fig. 4 shows comparison with the state-of-the-art methods on hallucination local test dataset which is heavy makeup on "face" part.

References

- [1] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang. Deep laplacian pyramid networks for fast and accurate super-resolution. *arXiv* preprint arXiv:1704.03915, 2017.
- [2] X. Ma, J. Zhang, and C. Qi. Hallucinating face by position-patch. Pattern Recognition, 43(6):2224–2236, 2010.
- [3] X. Yu and F. Porikli. Ultra-resolving face images by discriminative generative networks. In *European Conference on Computer Vision*, pages 318–333. Springer, 2016.
- [4] X. Yu and F. Porikli. Face hallucination with tiny unaligned images by transformative discriminative neural networks. In *AAAI*, pages 4327–4333, 2017.



(f) TDN

(a) LR

(b) Bicubic

(d) Ma et al.

(f) TDN

(g) AACNN

- L^{SR}

(h) AACNN - $L^{SR} + L^{adv}$

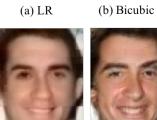
- $L^{SR} + L^{adv}$

(e) UR-DGN

(g) AACNN (h) AACNN - *L*^{SR}

(c) LapSRN

(f) TDN


(a) LR

(c) LapSRN

(d) Ma et al.

Figure 1. Comparison with the state-of-the-art methods on hallucination global test dataset. (a) Low-resolution inputs images. (b) Bicubic interpolation. (c) LapSRN [1]. (d) Ma et al. [2]. (e) UR-DGN [3]. (f) TDN [4]. (g) AACNN - L^{SR} . (h) AACNN - $L^{SR} + L^{adv}$. (i) High-resolution images.

(d) Ma et al.

(e) UR-DGN

(f) TDN

(a) LR	(b) Bicubic	(c) LapSRN	(d) Ma et al.	(e) UR-DGN
(f) TDN	(g) Baseline - L ^{SR}	(h) AACNN - L ^{SR}	(i) AACNN - $L^{SR} + L^{adv}$	(j) HR
(a) LR	(b) Bicubic	(c) LapSRN	(d) Ma et al.	(e) UR-DGN
(f) TDN	(g) Baseline - L ^{SR}	(h) AACNN - L ^{SR}	(i) AACNN - $L^{SR} + L^{adv}$	(j) HR
(a) LR	(b) Bicubic	(c) LapSRN	(d) Ma et al.	(e) UR-DGN
(f) TDN	(g) Baseline - L ^{SR}	(h) AACNN - L^{SR}	(i) AACNN - $L^{SR} + L^{adv}$	(j) HR

Figure 2. Comparison with the state-of-the-art methods on hallucination local test dataset which is eyeglasses on "eye" part. (a) Low-resolution inputs images. (b) Bicubic interpolation. (c) LapSRN [1]. (d) Ma et al. [2]. (e) UR-DGN [3]. (f) TDN [4]. (g) Baseline - L^{SR} . (h) AACNN - L^{SR} . (i) AACNN- L^{SR} + L^{adv} . (j) High-resolution images.

(a) LR

(f) TDN

(a) LR

(f) TDN

(a) LR

(f) TDN

(b) Bicubic

(g) Baseline - L^{SR}

(b) Bicubic

(g) Baseline - L^{SR}

(b) Bicubic

(g) Baseline - L^{SR}

(c) LapSRN

(h) AACNN - L^{SR}

(c) LapSRN

(h) AACNN - L^{SR}

(c) LapSRN

(h) AACNN - L^{SR}

(d) Ma et al.

(i) AACNN - L^{SR} + L^{adv}

(e) UR-DGN

(j) HR

(d) Ma et al.

(i) AACNN
- L^{SR} + L^{adv}

(d) Ma et al.

(i) AACNN
- L^{SR} + L^{adv}

(e) UR-DGN

(j) HR

(e) UR-DGN

(j) HR

Figure 3. Comparison with the state-of-the-art methods on hallucination local test dataset which is goatee on "mouth & nose" part. (a) Low-resolution inputs images. (b) Bicubic interpolation. (c) LapSRN [1]. (d) Ma et al. [2]. (e) UR-DGN [3]. (f) TDN [4]. (g) Baseline - L^{SR} . (h) AACNN - L^{SR} . (i) AACNN- $L^{SR} + L^{adv}$. (j) High-resolution images.

(a) LR

(f) TDN

(b) Bicubic

(g) Baseline - L^{SR}

(b) Bicubic

(a) LR

(f) TDN

(a) LR

(f) TDN

2

(b) Bicubic

(g) Baseline - L^{SR}

(c) LapSRN

(h) AACNN - L^{SR}

(c) LapSRN

(h) AACNN

(c) LapSRN

- L^{SR}

(d) Ma et al.

(i) AACNN - $L^{SR} + L^{adv}$

(d) Ma et al.

(i) AACNN - $L^{SR} + L^{adv}$

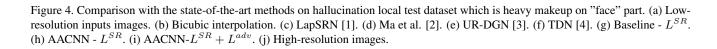
(d) Ma et al.

(i) AACNN - $L^{SR} + L^{adv}$

(e) UR-DGN

(j) HR

(e) UR-DGN


(j) HR

(e) UR-DGN

(j) HR

(h) AACNN

- L^{SR}