Challenges on Large Scale Surveillance Video Analysis

Weitao Feng, Deyi Ji, Yiru Wang, Shuorong Chang, Hansheng Ren, Weihao Gan; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2018, pp. 69-76


Large scale surveillance video analysis is one of the most important components in the future artificial intelligent city. It is a very challenging but practical system, consists of multiple functionalities such as object detection, tracking, identification and behavior analysis. In this paper, we try to address three tasks hosted in NVIDIA AI City Challenge contest. First, a system that transforming the image coordinate to world coordinate has been proposed, which is useful to estimate the vehicle speed on the road. Second, anomalies like car crash event and stalled vehicles can be found by the proposed anomaly detector framework . Third, multiple camera vehicle re-identification problem has been investigated and a matching algorithm is explained. All these tasks are based on our proposed online single camera multiple object tracking (MOT) system, which has been evaluated on the widely used MOT16 challenge benchmark. We show that it achieves the best performance compared to the state-of-the-art methods. Besides of MOT, we evaluate the proposed vehicle re-identification model on VeRi-776 dataset and it outperforms all other methods with a large margin.

Related Material

author = {Feng, Weitao and Ji, Deyi and Wang, Yiru and Chang, Shuorong and Ren, Hansheng and Gan, Weihao},
title = {Challenges on Large Scale Surveillance Video Analysis},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2018}