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Abstract

Action Recognition in videos is an active research field
that is fueled by an acute need, spanning several applica-
tion domains. Still, existing systems fall short of the appli-
cations’ needs in real-world scenarios, where the quality of
the video is less than optimal and the viewpoint is uncon-
trolled and often not static. In this paper, we extend the
Motion Interchange Patterns (MIP) framework for action
recognition. This effective framework encodes motion by
capturing local changes in motion directions and addition-
ally uses mechanisms to suppress static edges and compen-
sate for global camera motion. Here, we suggest to apply
the MIP encoding on gradient-based descriptors to enhance
invariance to light changes and achieve a better description
of the motion’s structure. We compare our method using
FPatterns of Oriented Edge Magnitudes (POEM) and Differ-
ence of Gaussians (DoG) as gradient-based descriptors to
the original MIP on two challenging large-scale datasets.

1. Introduction

Real world applications of human action recognition in
video are yet to emerge. This, in spite of the growing suc-
cess of commercial systems that are based on recent ad-
vances in other computer vision domains such as object
recognition and face recognition. A current trend, attend-
ing directly to the needs of real world video analysis, is
the shift from developing algorithms for benchmarks that
are based on staged videos taken under controlled settings,
to working with collections of unconstrained video. Com-
pared to the first benchmarks, the more recent ones show a
much larger variation in both scene parameters and imaging
parameters, including the actors’ identity and clothes, the
scene background and illumination, camera viewpoint and
motion, and image resolution and quality.

In order to work with unconstrained video, new video
descriptors have emerged. The recently suggested Motion
Interchange Patterns (MIP) method described in [11] en-
codes motion interchanges, i.e., the creation of a signature
that captures at every time point and at every image location
both the preceding motion flow and the next motion compo-

263

nent. This is done using a patch-based approach, sometimes
known as “self-similarity”, and local pattern encoding. To
decouple static image edges from motion edges, MIP in-
corporates a unique suppression mechanism, and to over-
come camera motion, it employs a motion compensation
mechanism. A bag-of-words approach is then used to pool
this information from the entire video clip, followed, when
appropriate, by a learned metric technique that mixes and
reweighs the various features. In this work, we created new
variants of the Motion Interchange Patterns (MIP) family
by incorporating gradient-based descriptors.

2. Related Work

Action Recognition is an on-going research in Computer
Vision, that is addressed by various approaches [22, 25].
One line of research extracts the high-level information of
the human shape in motion by building explicit models of
bodies [30], silhouettes [2] or 3D volumes [6]. In a recent
paper [23] a bank of action templates is collected, and the
templates are used for high-level action representation ap-
plied to challenging action recognition datasets.

A central family of approaches uses low-level represen-
tation schemes of the information in a video. These ap-
proaches can be further categorized as local descriptors, op-
tical flow and dynamic-texture methods. The MIP frame-
work, which is the basis of the current work, belongs to the
dynamic-texture based representations.

Local descriptors. Recent methods use local descriptors
for recognition [13, 28, 17]. The locality of the human mo-
tion in time and space is captured by a local spatio-temporal
environment representation, using feature point descriptors
borrowed from images or adapted to include temporal in-
formation. As a first stage, pixels that are potentially sig-
nificant to understand the scenario are detected. These are
often referred to as space-time interest points (STIP) [15].
The region around each interest point is represented by a
local descriptor. To represent the entire video, these de-
scriptors are processed and combined using, for example, a
bag-of-words representation [ 16]. This approach was tested
successfully on recent real-world datasets (e.g., [12]). How-
ever, a major drawback of this approach is the sensitivity to
the number of interest points detected. In videos with subtle



motion, only a small number of interest points is detected,
providing insufficient information for recognition. Videos
with too much motion (textured motion such as waves in a
swimming pool or leaves moving in the wind) may provide
a lot of information irrelevant for recognition thus masking
the relevant discriminative points required for recognition.
Optical-flow based methods. The optical flow between
successive frames [ 1, 24], sub-volumes of the video [Y], or
surrounding the central motion [4, 5] is highly valuable for
Action Recognition. A drawback of optical flow methods,
is committing too soon to a particular motion estimate at
each pixel. When these estimates are mistaken, they affect
subsequent processing by providing incorrect information.

The Motion Boundary Histograms (MBH) descriptor
proposed in [3] computes oriented histogram of differential
optical flow, thus capturing motion while being more robust
to camera motion than optical flow. An alternative method
is based on dense trajectories [28, 29]. The trajectories are
extracted efficiently with optical flow and represent the lo-
cal motion information in the video. The descriptors are
then computed as HOG, HOF or MBH on a spatio-temporal
volume defined by the trajectory. This method is state of the
art on the HMDBS51 [14] dataset but was not tested before
on the ASLAN [12] dataset.

Dynamic-texture representations. Existing techniques for
recognizing textures in 2D images extend the textures to
time-varying “dynamic textures” (e.g., [10, 7]). One such
technique is Local Binary Patterns (LBP) [2 1], that extracts
texture using local comparisons between a pixel and the pix-
els surrounding it, and encodes these relations as a short
binary string. The frequencies of these binary strings are
combined to represent the entire image region. In [10, 32],
an extension of the LBP descriptor to 3D video data was
successfully applied to facial expression recognition tasks.

The Local Trinary Patterns (LTP) descriptor of [31] is
another LBP extension to videos. An LTP code of a pixel
p is computed as follows: a spatial patch around p is de-
fined as the central patch. In the next frame, a circle cen-
tered at the pixel corresponding to p is sketched, and spatial
patches are uniformly distributed around it. A similar circle
of patches is sketched in the preceding frame. Every pair of
patches, one patch from the former frame and one from the
next, is compared to the central patch in the current frame.
A trinary bit represents the comparison result - whether the
central patch is more similar to the patch in the preceding
frame, the succeeding frame or if the two similarities are ap-
proximately the same. The comparisons conducted for all
pairs of former and succeeding patches are represented in a
trinary string. A video is partitioned into a regular grid of
non-overlapping cells and the histograms of the LTP codes
in each cell are then concatenated to represent the entire
video. The Motion Interchange Patterns (MIP) (described
in detail in Section 3) is closely related to LTP.
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In this work, a single frame is locally encoded either

based on the soft version of Patterns of Oriented Edge Mag-
nitudes [27, 26], or by the Difference of Gaussians [19].
Patterns of Oriented Edge Magnitudes (POEM). An effi-
cient image gradient-based descriptor, suggested in [27] and
further investigated in [26]. POEM computes the gradient
orientation for every pixel in the image and quantizes it. For
each pixel p, the matching descriptor is the orientations his-
togram over a patch centered at p. The gradient magnitude
of every pixel in the patch is assigned to the histogram bin
corresponding to the nearest orientation. In the soft version
of POEM, the magnitude assignment of every pixel in the
patch is distributed between the bins corresponding to the
two nearest orientations.
Difference of Gaussians (DoG). An image descriptor ob-
tained by applying s Gaussian kernels differing in their
o values, thus constructing s blurred versions of the im-
age [18]. For each pair of adjacent o values, the differ-
ence between the corresponding blurred images is calcu-
lated. The DoG descriptors are (s — 1)-dimensional vectors
containing the computed differences per pixel.

3. Motion Interchange Patterns

Given an input video, the MIP encoding [ ! |] assigns to
every pixel of every frame eight strings of eight trinary dig-
its each. Every single digit compares the compatibility of
two motions with the local patch similarity pattern: one mo-
tion in a specific direction from the previous frame to the
current frame, and one motion in another direction from the
current frame to the next one. Figure 1 illustrates the mo-
tion structure extracted from comparing different patches.
A value of —1 indicates that the former motion is more
likely, 1 indicates that the latter is more likely. A value
of 0 indicates that both are compatible in approximately the
same degree.
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Figure 1. Representation of motion comparisons between two
patches. For a given pixel and frame, blue arrows show the mo-
tion from a patch in the preceding frame and red arrows show the
motion to a patch in the succeeding frame.

A 3 x 3 patch is centered around the given pixel. Eight
possible locations in each of the previous and the next
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Figure 2. Each trinary digit in the MIP encoding represents a com-
parison of two SSD scores, both referring to the same central patch
(in green). SSD1 is computed between the central patch and a
patch in the previous frame (in blue), and SSD2 is computed be-
tween the central patch and a patch in the next frame (in red).

frames are denoted ¢ and j (respectively) and numbered
from O to 7. All 64 combinations of ¢ and j are consid-
ered, and the resulting code is denoted by S(p). Each digit
S;i,j(p) corresponds to one combination of patch locations
in the previous and next frames (respectively).

The sum of squared differences (SSD) patch-comparison
operator is used to set the matching bit. Denote by SSDI
(SSD2) the sum of squared differences between the patch in
the previous (next) frame and the patch in the current frame,
as depicted in Figure 2. Each trit, .S; ;(p), is computed as
follows, for some threshold parameter 6:

1 if SSD1—6>S8SD2
Sij(p) = 0 if |SSD2-SSD1|<6 (1)
~1 if SSD1<SSD2-6

MIP compares all eight motions to the eight subsequent
motions, obtaining a comprehensive characterization of the
change in motion at each video pixel.

To overcome the ambiguity introduced by camera mo-
tion even in motionless parts of the scene, a motion com-
pensation module finds the alignment parameters that max-
imize the number of zero encoded pixels in the video. To
avoid implausible motion patterns such patterns are sup-
pressed.

Computing Similarity Positive and negative parts of each
string are separated, obtaining 2 UINTS per pixel, for each
of the eight possible values of the angle between direction %
and direction j. These 16 values represent the complete mo-
tion interchange pattern for that pixel. For each fixed value
of a, the histograms of these MIP codes are pooled from a
16 x 16 patches around each image pixel, thus creating 512-
dimensional code words. A bag-of-words is applied by em-
ploying k-means clustering on the code words obtained for
the training images, k¥ = 5000. Each local string is assigned
to the closest word, and a video clip is then represented by
eight histograms denoted as u“.

Applying MIP in learning tasks For the vanilla supervised
multi-class Action Recognition, the feature vector u repre-
senting a video clip is a concatenation of the eight u® of
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all channels. Linear SVM is then used to build a suitable
classification model.

In the action pair-matching task, the input comprises of
pairs of video clips, labeled as describing the same action
or a dissimilar action. This setting is cheaper to label, as it
does not require specifying an actual action, and only refers
to the similarity between two videos. Once a suitable simi-
larity measure between a pair of actions is learned, this set-
ting generalizes easily to measuring distance between pre-
viously unseen actions.

For this task, one can use the histograms directly (em-
ploying the Lo similarity) or employ a metric learning
step. The Cosine Similarity Metric Learning (CSML) al-
gorithm [20] was previously shown to be effective for MIP
encoding of the ASLAN benchmark. It is employed to each
of the eight u® vectors described above, and learns eight
corresponding transformations 7,.

CSML is computationally demanding, therefore, before
learning the CSML transformations, PCA is trained for each
channel separately on a subset of the training data and the
50 most significant dimensions are used. The resulting
transformation maps the feature vectors to a 30-dimensional
space, and concatenating the channels, the final representa-
tion of a single video clips is a 240-dimensional feature vec-
tor. The feature vector representing the similarity between
a pair of video clips is the element-wise multiplication of
their transformed feature vectors. Finally, a binary SVM
trains a similarity model on the feature vectors representing
the training set pairs.

CSML metric is learned on a training set { (v;, v}), l; }}*_;
consisting of n pairs of samples labeled as same (I; = 1) or
not same (/; = —1). The CSML optimization problem finds
a transformation 7" which minimizes

CSML(T, {(vi, vj)}, {l:i}) = Z{i|li:1} CS(T,vi,v)—
B1 Y iy OS(T i, o)) — BallT =1
)
with I being the identity matrix, and the transformed cosine

similarity defined as: C'S(T,v,v’) = % .
In the MIP paper, as well as here, the regularization pa-
rameter 3 is set to one, and the parameter /35 is optimized

using a coarse to fine scheme as suggested in [20].

4. Overview of the new variants

We suggest two variants of the original MIP scheme.
These variants are based on replacing the patch represen-
tation employed in MIP by representations that are based
on the gradients within each video frame. We call the first
variant histMIP, as it encodes each frame as a histogram of
gradient orientations, and second variant DoGMIP after the
Difference of Gaussians representation.



histMIP Given an input video, the texture of each frame
is encoded separately as a collection of local histograms.
These are then compared using the MIP scheme. For ev-
ery pixel p in the frame, let 6(p) and m(p) denote the gra-
dient orientation and magnitude respectively. The orien-
tation space 0 — 7 is evenly discretized to d orientations
1, ..., ¢q (indiscernible to opposing orientations). In our
experiments we use d = 3. Consider pixel p; with ori-
entation 6(p;) and the nearest discrete orientations ¢;, and
@iy, arranged ¢;; < 6(p;) < ¢;,. A d-dimensional vector
[m1(pi), ..., maq(p;)] is constructed by projecting the gra-
dient magnitude m(p;) to the discrete orientations above.
The projection is done by bilinear interpolation. Define a =

0(pi)— i, and B = ¢y, —0(ps), then 1, (i) = z25m(pi)
and 1, (pi) = F55m(p:) while all other coordinates are
nullified.

To incorporate information from neighboring pixels, a
local histogram of orientations over all the pixels within a
local image patch is computed. At pixel p, the feature vector
is [m1(p), ..., ma(p)] where mi(p) = 3_, o mi(p;) and
C refers to a patch (3 x 3) centered at the considered pixel.

The received histograms define d layers, where layer ¢
refers to orientation ¢; and contains all 72;(p) for all pixels
in all the frames in the video. MIP is computed separately
for each layer. In patchMIP, the distance between match-
ing pixels in consecutive frames is computed as an SSD
distance on 0 — 255 gray-level intensities of local patches
centered around the pixels. Instead, for each layer ¢
1..d separately, we compute the distance between match-
ing aggregated magnitude scalars from three consecutive
frames. Let m?" " (p), m§“""(p) and m***(p) be the val-
ues matching pixel p for orientation ¢;. The distance d;(p)
is (Mg (p) — M (p))? — (M (p) — M (p))? -

Each comparison provides a trinary value as described in
Eq. 1. We set the threshold to 2500, which is approximately
the distance d;(p) between a pair of idential aggregated
magnitude values, and a pair of patches with a constant
magnitude gap of 5.5, translating into 50 difference
between the aggregated matnitudes. Finally, the trinary
values across the layers are concatenated.

~
~

DoGMIP In this variant, the texture information of each
frame is extracted using Difference of Gaussians (DoG).
DoG applies d Gaussian kernels with differing standard de-
viation o on the image to achieve various levels of blurring.
For every pair of subsequent blurred images sorted by their
o values, we subtract one blurred image from the other, re-
sulting in d — 1 subtracted images per frame. We use four
Gaussian kernels with standard deviation 0.5, 1, 2 and 3,
hence compute three layers of subtracted images per frame.

Each layer is encoded separately, where the scalar values
of the DoG operators are used instead of the patches of the
same locations, and simple scalar square distances replace
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Figure 3. An example of the MIP varients encodings. (a) the orig-
inal image, (b) patchMIP features. Left: SSD1, middle: SSD2,
right :MIP encoding of the SSD differences, (c) histMIP features
per layer (d) MIP encoding for each histMIP layer, (¢) DoGMIP
features per layer, (f) MIP encoding for each DoGMIP layer. The
encoded motion extracted by the gradient-based variants is more
accurate than the patchMIP encoding, possibly because patchMIP
compares all image charectaristics over time, while histMIP and
DoGMIP first extract image gradients and compare only this in-
formation over time, yielding a better localization of motion.

the SSD operators. The trinary values are provided based
on the compared distance values and a threshold, set in our
experiments based on trial and error to 80, 40 and 7 for the
three layers respectively. The final output from all three
layers is concatenated to represent the video.

An example of both methods is shown in Figure 3. For
each method, the gradient-based layers and the MIP motion
descriptors are presented.



5. Experiments

We compare the performance of histMIP and DoGMIP
to the performance of patchMIP with and without combin-
ing those to the STIP method [15], the dense trajectories
method [29] and the Motion Boundary Histograms (MBH)
method [3]. In all our experiments we use the MIP parame-
ters as described in [11].

To evaluate the dense trajectories and the MBH we used
the code published in ' and employed it with the default
parameters. For the HMDBS51 dataset, our results are sig-
nificantly lower than the results reported in [29].

We test on two challenging real-world Action Recogni-

tion benchmarks, ASLAN and HMDB51.
ASLAN. The Action Similarity Labeling (ASLAN) bench-
mark [12] is a large-scale benchmark containing thousands
of video clips collected from YouTube and over 400 com-
plex action classes. Following the Labeled Faces in the
Wild face identification dataset [8], the authors supply a
baseline test for the action pair-matching task (‘“same/not-
same”) using a cross-validation over 10 splits. The splits
are mutually exclusive, and each contains 300 pairs of same
action videos and 300 not-same pairs.

The results are averaged on the ten experiments. In each
experiment, nine splits are used for training, and the tenth
for testing. To ensure that the experiments are independent
of each other, all intermediate models, such as the dictio-
nary built in the BOW stage, the PCA matrices and the
CSML transformations, are learned per experiment.

The comparison among all tested methods and combi-

nations of methods with and without employing CSML
transformation is presented in Table 1. For each method
or combination of methods, we report the average accu-
racy £ standard error, and the aggregated Area Under the
ROC Curve (AUC). Incorporating the STIP detection con-
sistently pushes performance 1 — 3% higher. Learning the
CSML transformations further boosts performance by ad-
ditional 1 — 2%. Combining the three MIP variants with
MBH descriptors achieves the best recognition rates, with
and without CSML transformations.
HMDB51. The Human Motion Database [14] contains 51
actions and at least 101 video clips per action, summing
to a total of 6,766 video clips. The data was collected
from movies and public databases. The performance level
of HOG and HOF is in the low twenties, which suggests
that this dataset is very challenging. However, recently the
dense trajectories method was reported to achieve a state-
of-art performance of 46.6%.

The dataset was evaluated using the three splits bench-
mark, each containing a hundred clips per each action - 70
for training and 30 for testing. The splits were selected to

Inttp://lear.inrialpes. fr/people/wang/dense_
trajectories
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display a representative mix of video quality and camera
motion attributes. We did not use the stabilized HMDBS51
and used the original video clips instead, as the MIP con-
tains a motion compensation mechanism.

The results are depicted in Table 2. The patchMIP result
is taken from [11]. We tested histMIP, DoGMIP and their
combinations. Combining patchMIP, histMIP and DoGMIP
achieves a significant improvement over each variant by its
own, and when incorporating dense trajectories or MBH to
this combination, the accuracy is further increased.

Table 2. Comparison of MIP variants, dense trajectories and MBH
on the HMDBS51 database, tested on the unstabilized HMDBS51
data. Combininng the MIP variants with the other methods boosts
the performance. The patchMIP results are taken from [11].

System Accuracy
patchMIP 29.22%
histMIP 29.65%
dogMIP 22.5%
patchMIP + histMIP + dogMIP 34.77%
Traj (our own runs) 30.63%
MBH (our own runs) 29.13%
patchMIP + histMIP + dogMIP + Traj 36.93%
patchMIP + histMIP + dogMIP + MBH | 36.71%

6. Conclusions

In countless competitive contributions in computer vi-
sion, including the original MIP work and the MBH work,
the combination of multiple descriptors leads to a boost in
performance. In action recognition, which still lags behind
other computer vision domains with respect to performance,
such a combination might be a necessity when considering
the complexity of the tasks involved in real-world applica-
tions. We set to create new variants of the Motion Inter-
change Patterns framework. While not being able to present
an increase in performance in comparison to the original
MIP, combined with MIP, performance improves. We also
present results, which currently lead the ASLAN bench-
mark, in which the MBH descriptor is incorporated into the
set of descriptors employed. We are now working on di-
rectly combining the underlying encoding of MBG into the
MIP framework, i.e., on creating a MIP variant which is
based on optical flow and its derivatives. Hopefully, such a
hybrid descriptor would capture the strengths of both meth-
ods.
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