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Abstract

Photographs, videos or masks can be used to spoof face
recognition systems. In this paper, a countermeasure is
proposed to protect face recognition systems against 3D
mask attacks. The reason for the lack of studies on
countermeasures against mask attacks is mainly due to the
unavailability of public databases dedicated to mask
attack. In this study, a 2D+3D mask attacks database is
used that is prepared for a research project in which the
authors are all involved. The proposed countermeasure is
based on the fusion of the information extracted from both
the texture and the depth images in the mask database,
and provides satisfactory results to protect recognition
systems against mask attacks. Another contribution of this
Study is that the countermeasure is integrated to the
selected baseline systems for 2D and 3D face recognition,
which provides to analyze the performances of the systems
with/without attacks and with/without the countermeasure.

1.Introduction

Spoofing attack occurs when a person tries to
masquerade as another person by falsifying data and
thereby gaining illegitimate access. Based on the
observations that face recognition (FR) systems are
vulnerable to spoofing attacks, researchers started to work
on countermeasures to reduce the impact of attacks on
face recognition performances. There have been studies on
countermeasures to detect photo and video attacks, which
are 2D face attacks [1 - 5]. However, 3D mask attacks to
FR systems is a considerably new topic.To the best of our
knowledge, only in [6, 7], countermeasures are proposed
to detect mask attacks, however without analyzing
whether the masks are able to spoof FR systems or not.
The main reason for the lack of studies on mask spoofing
is due to the unavailability of public databases. In this
study, the mask database which is prepared within the
context of European Union research project TABULA
RASA is used.

The preparation of a mask spoofing database is much
more difficult and expensive than the preparation of photo
or video spoofing databases. The mask attacks database
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Figure 1. Example from the mask database which is created by [8]. From
left to right (upper row) The real face, the cropped texture image, the 3D
scan after preprocessing, the cropped depth map estimated from the raw
3D scan (lower row) same images for the corresponding mask attack.

which is used in this study was created by MORPHO [8].
This database contains high quality mask samples and
consists of both 3D scans and texture images (Fig. 1). In
this paper, mask spoofing is analyzed on both 2D and 3D
FR. For this purpose, one state-of-the art technique is
selected for each of 2D FR and 3D FR and the proposed
countermeasure is integrated to these systems.

In [9], a micro-texture analysis technique is proposed to
detect 2D attacks (e.g. photo, video), and in [6], this
technique is used to detect 3D mask attacks. In [9], texture
images are used as input whereas in [6], the technique is
not applied only on the texture images, it is also applied on
the depth maps estimated from 3D scans. The present
study is also proposed to detect 3D mask attacks. The
novelties of our study compared to [6] are:

e In [6], the performance of the countermeasure is
analyzed on each one of the texture images and the depth
maps separately, to detect mask attacks. In the present
study, the performance of the countermeasure is evaluated
by fusing the information extracted from each one of the
texture and the depth images in the mask database both in
score and feature level to obtain better performance.

e In this study, the countermeasure is integrated to
the selected state-of-the art systems for 2D and 3D FR.
Hence we can analyze whether the masks are able to spoof
these systems or not, and the impact of the countermeasure
on the performances of the systems under attacks, directly.



The paper is organized as follows: Section 2 gives brief
information on the mask database which is used in this
study. Section 3 explains the 3D and 2D FR systems that
are selected as baseline in this study. Section 4 explains
the countermeasure. Section 5 shows the experiments and
results. Finally, conclusions are provided in Section 6.

2.Mask Database

The mask which is used for 3D face spoofing purposes
has to show very similar 3D face shape characteristics of
the target face to be considered as a successful attack. To
obtain similar face shape characteristics of the target
person, initially, scans of the subjects in the mask database
were taken by a 3D scanner which uses structured light
technology. Then the 3D model (3D mesh, the output of
acquisition) of each subject was sent to the 3D printer and
masks were manufactured by Sculpteo 3D Printing [10].

In the mask database, 20 subjects appear in total. The
masks are manufactured for 16 of these subjects. In this
database, these 16 subjects appear with both their own
mask and also with the masks of the other people. The
remaining 4 subjects appear with the masks of the other 16
subjects. For each subject, average 10 scans are taken for
the original person (real accesses) and average 10 scans
are taken for the person wearing either his/her own mask
or masks of the other subjects that appear in the same
database (mask attack accesses). Some samples had to be
removed in the mask database due to their improper scans.
Finally, in the present study, 200 real accesses and 198
mask attack accesses are used for the evaluations.

3.The Selected Face Recognition Systems

3.1. Pre-Processing for Face Recognition Systems

The pre-processing in this study is based on the method
in [11]. In order to crop the face region, the tip of the nose
is detected and the facial surface is cropped by a sphere
with radius 80mm, centered 10mm away from the nose tip
in +z direction. Next, spikes are removed by thresholding
and hole filling is applied. Finally, a bilateral smoothing
filter is used to remove white noise while preserving
edges.

In the evaluations, the pre-processed 3D scans are used
for 3D FR and the cropped texture images of the same
subjects are used for 2D FR. Finally, both the depth maps
which are estimated from the raw data and the texture
images are used as input for the proposed countermeasure.
Fig. 1 shows an example for the texture images, the pre-
processed 3D scans and the depth maps estimated from the
raw 3D scans of a real face access and corresponding
mask attack access, which are used in the evaluations.

3.2. Short Description on the Selected FR Systems

The 3D FR system used in this study was introduced in
[11] and selected as the baseline system in the project
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Figure 2. The feature extraction scheme and an illustration on a sample
model: (a) The subject’s face with and without texture (b) generic model
before and after alignment (c) generic model after warping with and without
texture. This figure is taken from [11].

TABULA RASA. It uses the pre-processed 3D mesh of
the face as input. Initially, a linear transformation is
computed in a least square sense, based on two sets of
landmarks (landmarks of the generic model and the
subject’s face). The landmark points are previously
annotated at the nose tip and outer eye corners for each
sample in the database. The best fit mapping is calculated
by minimizing the squared distance (LSS) between the
point sets of generic model and subject’s face. The
obtained transformation that includes rotation, translation
and isotropic scaling is applied onto the generic model,
aligning it with the subject’s face. Next, the alignment is
further improved by Iterative Closest Point (ICP) method
[12]. Afterwards, 140 previously selected points on the
generic model are coupled with the closest vertices on the
face under analysis and Thin Plate Spline (TPS) [13]
warping is applied on the generic model resulting in
warping parameters (WP) of size 140x3. WPs that
represent the deviations from the common structure are
given to the classifier for recognition. Finally, the distance
between two face models is computed by taking the
median of cosine distances between the corresponding
feature vectors (WP) and verification rates are computed.
Fig. 2 shows the feature extraction on a sample model
using this WP technique.

Local Binary Pattern (LBP) provides state-of-the-art
results in representing and recognizing face patterns [14].
The success of LBP is due to the discriminative power and
computational simplicity of the operator, and its
robustness to monotonic gray scale changes caused by, for
example, illumination variations. For 2D FR system, in
this study, the operator LBP&Zuz is selected to be used on
8x%8 blocks. The similarity between each image pair is
computed wusing chi-square distance metric. The
performance evaluations are done using these similarity
scores between image pairs.



4.The Proposed Countermeasure Technique

Mask attack is a 3D attack that can be used to spoof
both 2D and 3D FR systems. Most of the existing 3D
scanners do not provide only 3D scan, they also capture
texture image. Fig. 1 shows an example for the two
outputs of a scanner. Thus, when there is only one camera
for 2D FR and one scanner for 3D FR system,
countermeasure which uses texture images as input can be
used to protect both 2D and 3D FR systems if texture
images are provided as default output of scanner.

In this study, we fuse the information which is extracted
from both the texture and the depth images in our mask
database using micro-texture analysis. Also, we integrate
the countermeasure to FR systems to analyze
performances of these systems with/without attacks and
with/without the countermeasure a plus further from the
studies [6, 7]. Both score and feature level fusion are
applied in this study. Since existing 3D scanners provide
both the 3D scan and the corresponding texture image, this
countermeasure can be applied to protect 3D FR systems,
directly.

The mask database is 2D+3D. For the sake of clarity,
the database of real faces in 2D and 3D will be referred as
DB-r2 and DB-r3, while the database of mask attacks will
be referred as DB-m2 and DB-m3 in the rest of this paper.

4.1. Pre-Processing for the Countermeasure

There are slight alignment differences between faces in
the mask database. For the countermeasure, initially all 3D
faces in DB-r and DB-m are aligned to a generic face,
which makes the alignment of all faces identical.

In this study, we want to benefit from the information
that the mask surface is smoother than the real face surface
to detect mask attacks. Therefore, the raw data is used for
the countermeasure. The depth maps are estimated from
the raw aligned 3D scans (e.g last column in Fig. 1). Only
2D cropping is applied to extract the face region from both
the texture images and the depth maps. Then all images
are resized into 64x64 grayscale image.

4.2. Micro-Texture Analysis Based Countermeasure

The micro-texture analysis method [9] is used to extract
features as a part of the countermeasure proposed in our
study. The novelties of this study compared to [9] are:

e The technique in [9] is used to detect 2D face print
(e.g. photo, face picture on a paper) attacks whereas in our
study, we use this technique to detect 3D mask attacks.

eIn our study, the technique is applied both on the
texture images and on the depth maps. Hence we prove
that the technique is also successful on 3D data.

This LBP based technique emphasizes the micro-texture
differences in the feature space. It aims at learning the
differences between real and fake face, and designs a
feature space which emphasizes those differences.

The original LBP forms labels for the image pixels by
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thresholding the 3 x 3 neighborhood of each pixel with the
center value and considering the result as a binary number.
The LBP operator has been extended to use neighborhoods
of different sizes. LBPpy is computed such that for a given
central pixel in an image, a pattern number is computed by
comparing its value with those of its neighbors. In Eq. (1),
g. is the gray value of the central pixel, g, is the value of
its neighbors, P is the number of neighbors around a circle
of radius R. LBPp calculation is shown in Eq. (1) and (2):

P-l
LBPP‘R=Zs(gp—gC)2", M

p=0

1
S(x)={0

Another extension to the original operator is the use of
uniform patterns, which are verified to be the fundamental
patterns of local image texture. A local binary pattern is
called uniform if the binary pattern contains at most two
bitwise transitions from 0 to 1 or vice versa when the bit
pattern is traversed circularly. The notation is LBPP,Ruz. u2
stands for using only uniform patterns and labeling all
remaining patterns with a single label.

In [9], authors claim that micro-texture details that are
needed to discriminate a real face from face print can best
be detected using combination of different LBP operators.
Thus, they derive an enhanced facial representation using
multi-scale LBP operators. Their proposed representation
computes LBP features from 3 x 3 overlapping regions to
capture the spatial information and enhances the holistic
description by including global LBP histograms computed
over the whole image. This is done as follows: the face is
cropped and resized into a 64x64 pixel image. Then,
LBP&]UZ operator is applied on the face image and the
resulting LBP image is divided into 3x3 overlapping
regions (with an overlapping size of 14 pixels). The local
59-bin histograms from each region are computed and
collected into a single 531-bin histogram. Then, two other
histograms are computed from the whole face image using
LBPg,zU2 and LBP16,2“2 operators, yielding 59-bin and 243-
bin histograms that are added to the 531-bin histogram
previously computed. Hence, in [9], the length of the final
enhanced feature histogram is 833 (i.e. 531+59+243).

Captured image from mask may visually look very
similar to the image captured from live face (e.g. the
texture images in Fig. 1). A close look at the differences
between faces in DB-r2 and DB-m2 reveals that their
surface properties are different. For mask manufacturing
3D printers are used, hence they may contain printing
quality defects that can be detected with micro-texture
patterns. In our study, the micro-texture analysis technique
is first applied on the texture images in the mask database
and the feature histogram of length 833 is obtained.

The 3D shape of high quality mask is also very similar
to the 3D shape of the corresponding real face (e.g. the 3D
scans in Fig. 1). Our analysis on DB-r3 and DB-m3 show
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that the mask scan is smoother than the real face scan.
Especially the parts of the face with facial hair are quite
different. Since there is no real facial hair (e.g. mustache,
eyebrow) on the mask, the 3D scan of the mask is
smoother in these parts compared to the real face scan.
High quality scanners cause less number of holes however
even with the best scanners it is possible to observe some
holes on the scan especially at the parts of the face with
facial hair. Thus, in our study, secondly, the micro-texture
analysis is applied on the depth maps which are estimated
from the raw 3D scans in the mask database and the other
feature histogram of length 833 is obtained.

In the present study, we apply feature and score level
fusion of the information extracted from the texture and
the depth images in the mask database. For feature level
fusion, the two feature histograms computed from the
texture and the depth images are concatenated and the
classifier is applied on the resultant feature histogram.
Thus, the length of the final feature histogram is 1666
(instead of 833). Once the enhanced histogram of length
1666 is computed, a linear SVM classifier [15] is used to
determine whether the input image corresponds to a live
face or not. For score level fusion, linear SVM classifier is
applied using the texture and the depth features separately,
and scores are obtained for the two groups. Then, Z-score
normalization is applied for each of these groups. Finally,
the weighted score level fusion is used for combining the
outputs of the individual SVMs to determine whether the
input image corresponds to a live face or not.

4.3. Integration of the Countermeasure to FR Systems

The evaluations in this study are done for 4 modes. The
first mode is the baseline mode: a standard, state-of-the-art
biometric  system with no spoofing and no
countermeasure. The baseline performance is evaluated
using DB-r in the mask database. Performance is
evaluated by verification all vs. all. Access from every
identity in DB-r is tested against all other models in DB-r.
The performance is measured by observing the rate of
users rejected when authenticating against their own
template (False Rejection Rate - FRR) and by the rate of
users accepted when authenticating against someone else's
template (False Acceptance Rate - FAR). When spoofing
attacks are applied, baseline performance is expected to
degrade. The second mode is the evaluation of FR systems
under mask attacks. Both DB-r and DB-m are used. In this
mode, the FAR corresponds to the rate of attacks that are
accepted by the system when spoofed. The FRR
corresponds to the rate of real-access attempts that are
incorrectly dismissed by the system as attacks. Third mode
illustrates performance when the countermeasure is
applied against the attacks, that results in an improved
performance with respect to the second mode. For the
samples which are detected as attack by the
countermeasure, a least similarity score is assigned to
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those samples in verification tests. Last mode evaluates
the performance of the baseline system together with the
countermeasure in the normal operation mode of system,
i.e., without attacks. The inclusion of the countermeasure
may degrade the baseline performance when not
confronted to attack. (e.g. the countermeasure may
consider as fake some real users.)

In the mask database, initially DB-r and DB-m are
partitioned in training and test datasets. 8 subjects out of
16 subjects whose masks are manufactured and 2 subjects
out of 4 subjects whose masks are not manufactured are
selected for DB-r. The samples of the selected subjects are
assigned to the test set of DB-r, while the rest is used for
the training set of DB-r. For DB-m, the mask attack
accesses to the corresponding identities in the test set of
DB-r are involved in the test set of DB-m, while the rest is
used for the training set of DB-m. There is no overlap
between the training and the test sets which makes the
spoofing detection more challenging. This partitioning is
done for both the texture images and the depth maps.

Training dataset is used for classifier training. This
classifier is subject to two kind of errors:

e FLR (False Living Rate), that represents the percentage
of fake data misclassified as real. (similar to FAR)

e FFR (False Fake Rate), which computes the percentage
of real data assigned to the fake class. (similar to FRR)

The lower these two errors, the better the performance
of the countermeasure. For evaluations, we fix 3 different
evaluation points at FFR= 1%, 5%, and 10%. Once fixed,
we incorporate the countermeasure as a first step into the
baseline biometric systems oriented to discard fake data,
and generate the performance evaluations for the 4 modes.

S5.Experiments and Results

The Region of Convergence (ROC) curve in Fig. 5
shows the stand-alone classification performance of the
countermeasure. Table I shows Area Under Curve (AUC)
and accuracy results when the countermeasure is applied
only on the texture images [6], only on the depth maps [6],
and finally feature and score level fusion of the
information extracted from the texture and depth images,
which is the proposed approach. The results in Table I
prove that both score and feature level fusion improves the
results compared to using only the texture or depth
images. Also, the results show that the score level fusion
provides the best results in terms of both AUC and
accuracy (accuracy of 93.5%). In [7], they achieved 89.2%
mean detection accuracy of real face vs. mask. However
an exact comparison is not possible since different
database is used in [7]. Thus, in the present study, we
apply the technique in [6] using the same database with
the same training-test sets. The results are reported in
Table I which prove that the performance is better with
fusion compared to [6].
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Figure 6. The DET Curves (computed with toolkit [16]) of the 3D face baseline biometric system when integrating the countermeasure.
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Figure 7. The DET Curves (computed with toolkit [16]) of the 2D face baseline biometric system when integrating the countermeasure.

Another contribution of this study is; the performance
of the selected baseline systems for 2D FR and 3D FR is
evaluated with/without mask attacks and with/without the
countermeasure. By this way, firstly, we can observe
whether the mask attacks are successful to spoof these
systems or not, and secondly whether our countermeasure
improves the performances of these systems under attacks
or not. All results are presented in terms of detection error
trade-of (DET) profiles which illustrate the behavior of a
system as the decision threshold is changed, i.e. how the
false acceptance rate varies according to the false rejection
rate. The score level fusion based countermeasure is used
in Fig. 5, 6 and 7, since it gives the best results.

Fig. 6 shows the behavior of the 3D face baseline
system with/without attacks and with/without the proposed
countermeasure. The three figures represent the overall
system performance under spoofing attacks when three
different operating points (FFR = 1%, 5%, and 10%) are
used for adjusting the countermeasure. It is clear from Fig.
6 that the 3D FR system is vulnerable to mask attacks.
(more area between black and red curves indicates more
vulnerability to the attacks). In Fig. 6, it is also clear that
performance enhancement is obtained almost all regions
of DET plots when the countermeasure is introduced to
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3D FR system under attacks (green curve compared to red
curve). If we take an operating point where FFR=1%, then
FAR of the 3D FR system under attacks drops from
around 50% to around 15% at FRR= 10%. For both of the
two other plots (at FFR=5% and 10%), the introduction of
the countermeasure lowers FAR from around 50% to 5%
and 10%, respectively, at FRR=10%. The performance of
the countermeasure is slight better at FFR=5% compared



TABLE I. AREA UNDER CURVE AND BEST ACCURACY RESULTS USING
THE TEXTURE IMAGES, THE DEPTH MAPS AND THE FUSION OF THEM

Micro-Texture Analysis AUC Accuracy
Applied on (%)
Texture Images 0.956 89.4
Depth Maps 0.915 82.4
Feature Level Fusion 0.976 93.0
(Proposed App.)

Score Level Fusion 0.978 93.5
(Proposed App.)

to the cases at FFR=1% and 10% when the Equal Error
Rates (EER) at three cases are compared. Finally, Fig. 7
shows the results of evaluations for the 2D face baseline
system. Similar to the results in Fig. 6, 2D FR system is
vulnerable to mask attacks and performance enhancement
is obtained at most of regions of DET plots in Fig. 7 when
the countermeasure is introduced to the 2D FR system
under attacks. At operating point FFR=1%, FAR of 2D FR
system under attacks drops from around 9% to 3% at
FRR=10%. At FFR=5%, the introduction of the
countermeasure lowers FAR from around 9% to around
5% and at FFR=10% FAR does not change at FRR=10%.

The plots in Fig. 6 and 7 prove that the 3D FR system,
which is completely based on 3D shape analysis, is more
vulnerable to mask attacks compared to the 2D FR system,
which is a texture based technique (area between black
and red curves is much more for the 3D compared to 2D
FR system). EER at the baseline mode increases from
1.8% to 25.1% for 3D FR and from 4.7% to 9.3% for 2D
FR system under attacks. This proves that the 3D face
shape characteristics of masks and real faces in the mask
database are more similar compared to their texture
characteristics. The inclusion of the countermeasure
improves the results of both 2D and 3D FR systems under
attacks, whereas it degrades baseline performances of both
systems when not confronted to attack (blue curve
compared to black curve).

6.Conclusions

In this study, a 2D+3D mask attacks database, which is
prepared for a European Union research project, is used to
evaluate the performances of the proposed countermeasure
for the protection of FR systems against mask attacks.

The novelty of this study is that it is one of the few
studies on the topic of spoofing countermeasures against
3D mask attacks. The proposed countermeasure uses both
the texture and the depth images as input. The technique
can be applied only on the texture or the depth images.
However, the results show that the technique provides
more satisfactory results when the information from the
texture and the depth images are fused. The technique can
be used to protect both 2D and 3D FR systems.

In this study, it is also proved that standard FR systems
are not robust to the spoofing mask attacks therefore
robust algorithms are necessary to mitigate the effects of
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spoofing attacks. The proposed countermeasure is an LBP
based approach which improves the performance of FR
systems under attacks, significantly. This study shows that
LBP based techniques give satisfactory results also for
spoofing detection. Our future work is to develop novel
countermeasures which provide even better classification
accuracies to detect mask attacks.
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