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Abstract

Face recognition technique is widely used in the real-
world applications over the past decade. Different from
other biometric traits such as fingerprint and iris, face is
the biological nature for humans to recognise a person even
met just once. In this paper, we propose a novel method,
which simulates the mechanism of fixations and saccades
in human visual perception, to handle the face recognition
from single image per person problem. Our method is ro-
bust to the local deformations of the face (i.e., expression
changes and occlusions). Especially for the occlusion re-
lated problems, which have not received enough attentions
compared with other challenging variations of illumination,
expression and pose, our method significantly outperforms
the state-of-the-art approaches despite various types of oc-
clusions. Experimental results on the FRGC and the AR
databases confirm the effectiveness of our method.

1. Introduction and related work
1.1. Face recognition by computers

Face recognition technique is widely used in biometrics
applications in the areas of access control, law enforcement,
surveillance and so on. In the unconstrained environment,
the appearance of a face is prone to be distorted by the vari-
ations such as partial occlusions and expression changes,
which could result in poor recognition performance. Differ-
ent from other challenging conditions such as illumination
changes, which affect the facial appearance globally, occlu-
sions and expressions usually distort the face locally. The
sources of occlusions (e.g., sunglasses, scarf, hand) are vari-
able and unpredictable, and the distortion due to expression-
s is non-linear. In the real-world environment, it is difficult
to explicitly model these local deformations since no pri-
or knowledge is available. A large number of works have
been proposed to deal with the occlusion and expression
variations over the past decade[18, 7, 10, 26, 14, 15]. One
promising example is the sparse representation-based clas-
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Figure 1. Illustration of fixations and saccades in human visual
perception for a face. The red boxes indicate the fixations.

sification (SRC) method[29], which represents a test image
as a linear combination of training images aided with an oc-
clusion dictionary. This kind of method requires sufficient
training samples per person to reconstruct the occluded im-
ages.

However, in the real-world application scenarios, usual-
ly only one image is available per person. The performance
of traditional learning based methods[25, 3] will suffer be-
cause the training samples are limited. Many approaches
are proposed to handle this single sample per person (SSP-
P) problem[24]. SOM[23] creates a suitable self-organising
map from images for representing each person. Partial dis-
tance (PD)[22] uses non-metric partial similarity measure
for matching with a similarity threshold which is learned
from the training set. Discriminative multi-manifold anal-
ysis (DMMA)[16] formulates the SSPP face recognition
as a manifold-to-manifold matching problem by learning
multiple feature spaces to maximize the manifold margin-
s of different persons. These methods are more or less
model-based. The thresholds or parameters in the model
are trained on a representative data set.

1.2. Face recognition by humans

Compared with other biometric traits such as fingerprint
and iris, face is the biological nature for humans to recog-
nise each other. Face recognition receives research inter-
ests from not only computer scientists, but also neurosci-
entists and psychologists. When observing an object (e.g.,



face), humans will focus on a small part (i.e., fixation) of
the whole object and quickly jump between them (the rapid
movement of eyes is called saccade)[2]. This is shown in
Fig. 1. In addition, when humans recognising a face, the
features are locally sampled by fixations but the whole fa-
cial structure is also considered[21]. Face recognition by
humans is dependent on the process involving both featural
and structural information.

Recently we proposed a Dynamic Image-to-Class Warp-
ing (DICW) method in our previous works[27, 28]. It has
demonstrated good performance in robust face recognition.
A face consists of the forehead, eyes, nose, mouth and chin
in a natural order and this order does not change despite oc-
clusions or expressions. DICW represents a face image as a
patch sequence which contains the facial order. It employs
both the local (i.e., patch-based features) and the global (i.e.
facial order) information, which is compatible with the pro-
cess of face recognition by humans.

In this paper, motivated by the human visual percep-
tion, we propose a scheme to improve DICW by simulating
the mechanism of fixations and saccades. Like DICW, our
method does not require a training phase and can be applied
to face recognition from single image per person. In addi-
tion, our method is more robust than DICW to occlusions
and expression changes.

The rest of this paper is organized as follows. Sec.
2 briefly introduces the Dynamic Image-to-Class Warping
(DICW) algorithm. Sec. 3 explains our method in details.
To evaluate the effectiveness of our method, extensive ex-
periments are conducted on the FRGC and the AR databas-
es and the results are reported in Sec. 4. Finally, Sec. 5
concludes the paper.

2. Dynamic image-to-class warping

We first briefly introduce the Dynamic Image-to-Class
Warping (DICW) algorithm. A face image is first par-
titioned into non-overlapping sub-patches which are then
concatenated in the raster scan order to form a sequence.
In this way, the facial order (i.e., from the forehead, eyes,
nose and mouth to the chin) information is encoded in each
sequence. DICW calculates the distance between a query
sequence and a set of reference sequences of an enrolled
class (person). Then the nearest neighbour (NN) classifier
is used for classification.

A probe image which is partitioned into M patches is
denoted by P = {py,...; Py, .-, Pps} Where p,, is the
feature vector extracted from the m-th patch. The gallery
set of a certain class containing K images is denoted by
G = {Gy,...,Gy,....,Gg}. Each gallery image is al-
so represented as a sequence of M patches as G
{Gk1s s Groms s 9ras }- A warping path W which indi-
cates the matching correspondence of patches between P
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and G by T steps is defined as W = {wq, ..., wy, ..., wr }.
The ¢-th element w; (me,my, k) € {1,2,...,M} x
{1,2,..,M} x {1,2,..., K} indicates that patch p,, is
matched to patch g,,,,,, at step ¢ where X indicates the Carte-
sian product operation. W satisfies the following three
constraints[27] which maintain the order information. It
can be found that the number of matching steps 7" satisfies
M<LT <2M - 1.

1. Boundary: m; = m} = 1 and my = m/. = M.
2. Continuity: m; —m;—; < land mj —mj}_; < 1.
3. Monotonicity: m;_; < m; and m},_; < mj.

Let Cuw, = Crny i ky = | Py — Grn || 5 be the local cost
between two patches p,, and g;,,.. The Image-to-Class
distance is the cost of the optimal warping path which has
the minimal overall cost:

T

DICW(P,G) = min Cu,
wEW i

ey

Eq.(1) can be solved through the Dynamic Programming
(DP) by creating a 3-D cumulative distance matrix D. Each
element D, ,,,/ 1 is recursively calculated based on the re-
sults of predecessors (i.e., sub-problems):

Dm—1,m—1)}x{1,2,....K}

Doy e = min [ Dym_1m/)yx{1,2,...K} +Crmm’ &
D ((mm—1)yx{1,2,....K}
(2
where the initial state is Do o,. = 0, Dg . = Dy, o, =

oo. The final Image-to-Class distance is the minimal ele-
ment of vector Dy .. as:
DICW(P,G) = 3)

min

Dok
ke{1,2,..,K}

Then the probe image P is classified as the class with
the shortest distance. Different from patch-wise matching,
DICW tries every possible warping path by DP then select-
s the one with minimal overall cost. So the warping path
which involves large distance errors will not be selected.

The time complexity of DICW is O(M?K)[27]. When
only one sample is available per person (K = 1), the Image-
to-Class distance degenerates into the Image-to-Image dis-
tance and the time complexity is O (M?).

3. Fixations and saccades based face recogni-
tion
Our new method relies on the three key observations:

e The structure of the face (i.e., the spatial relationship
between facial features) is very important in recogni-
tion by humans[21].
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Figure 2. The framework of the proposed method.

e Humans scan a series of fixations instead of the whole
face when performing recognition[2]. In addition, con-
sidering the local deformations due to occlusions and
expressions, these affected areas are not helpful for
recognition. Since the locations of deformations are
unpredictable, random sampling is a good choice. The
similar idea is also employed in other pattern recogni-
tion applications[9, 13].

e One fixation may not be sufficient for recognition, but
a large field of random selections will be likely to pro-
duce a good output. This is what is called the law of
large numbers (LLN).

Inspired by the mechanism of fixations and sac-
cades in human visual perception, we propose a novel
method based on DICW. Firstly, a number of R fixation-
s, {x!,...,z", ..., z'}, are randomly sampled from a face.
Each fixation (size of ¢ = h x h' pixels) is also partitioned
into ¢ (i.e., set M = ¢ in Sec. 2) patches (size of s = d x d’
pixels) and then forms a sequence which maintains the fa-
cial order. Then each fixation sequence is compared with
the fixation sequences from the corresponding area of en-
rolled face images by DICW. We define a binary function
f(r, 1) for recording the voting result for each fixation as:

1 if class(x”) =1
Fr0) = ss(@”)
0 otherwise

where I € [1,2,...,L] and L is the number of classes.
class(x") is the label of fixation " which is obtained by
the NN classifier according to the DICW distance. Even

“)
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just only one image is available per person, the final clas-
sification decision can be made by the majority voting of a
large number of fixations:

R
assign P — classl if Zf(nl) =

r=1

R
L .
max i
na; g F(r.i)
®)
where P is the probe image. Here each fixation has the
possibilities to classify the face correctly or wrongly. The
correct recognition rate is the probability of the consensus
being correct. The combined decision is wrong only if a
majority of the fixations votes are wrong and they all make
the same misclassification. But this does not often happen
due to the large number of different possible misclassifica-
tions.

The framework of our method is shown in Fig. 2. As
mentioned in Sec. 2, the time complexity of DICW with
single sample per person is O(M?) (here M = q) so the
time complexity of our method is O(R(£)?) where ¢ = <.

4. Experimental results

In this section, two well-known face databases
(FRGCJ19] and AR[17]) are used to evaluate the effective-
ness of the proposed method. The FRGC database contains
44,832 still images of 688 subjects with different illumi-
nations and facial expressions. The AR database contains
more than 4000 frontal view images of 126 subjects with d-
ifferent expressions, illumination conditions and occlusion-
s. It is one of the very few databases which contain real
disguises.

Experiments of face recognition with different occlu-
sions (e.g., randomly located squares, sunglasses, scarves)
and expressions (e.g., smile, anger, scream) are conducted
on these public databases. Images are cropped and re-sized
to 80x65 pixels in the FRGC database and 83 x60 pixel-
s in the AR database. For feature extraction, we use LBP
(LBP’g?z) descriptor[ 1], which is insensitive to illumination
changes and robust to small misalignment.

We quantitatively compare our method with the methods
mentioned in Sec. 1 as well as some methods based on
similar ideas as ours. We set the fixation size e to 3% of
an image, and use 300 fixations (R = 300) which will be
about 1.5 minutes of viewing time for a face assuming 3
fixations per second[13]. We follow the settings in [27] and
use patch size of s = 6 x 5 pixels in the FRGC database
and s = 5 x 5 pixels in the AR database for each fixation.
In all experiments, we run our method 10 times and report
the average recognition rate.

4.1. Face recognition with randomly located occlu-
sions

We first evaluate the proposed method using the FRGC
database. Similar as the work in [12], a set of images of 100



(a)

(b)

Figure 3. a) Images from the FRGC database with randomly locat-
ed occlusions. b) Images from the AR database with occlusions.
¢) Images from the AR database with different expressions.

subjects, which are taken in two sessions, are used in our
experiments. For each subject, we choose 1 image as the
gallery set and 4 images as the probe set. In order to sim-
ulate the contiguous occlusion, we replace a randomly lo-
cated square (size from 0% to 50% of the image) from each
test image with a black patch. Notice that the location of
occlusion is randomly chosen and unknown to the algorith-
m. As shown in Fig. 3a, in some cases most salient facial
features are occluded, which is very challenging for recog-
nition. Our aim here is to recognise an occluded face based
on the unaffected parts from single image rather than to re-
construct the face from occlusions, so the face with more
than 50% occluded area is not discussed in this work. In
that case, the unaffected parts are too small to recognise
even for humans.

Table 1. Recog. rates (%) on the FRGC database

Occlusion 0% 10% 20% 30% 40% 50%
LSVM[4] 69.5 658 573 368 36.8 223
SRC-block[29] 65.8 55.8 47.8 39.8 325 228
DICW|[27] 793 77.8 773 728 70.8 64.5
Ours 842 824 803 781 732 69.6

There are 6 probe sets, each corresponding to a different
level of occlusion (i.e., 0%, 10%, 20%, 30%, 40% 50%).
The recognition results are shown in Tab. 1. As expect-
ed, the recognition rates decrease when the level of occlu-
sion increases. Our new method outperforms DICW[27]
by about 5% and other methods such as the reconstruction
based SRC[29] (using 4 x 2 block partitioning for perfor-
mance improvement) and the baseline linear support vector
machine(LSVM)[4]. Even half of the face is occluded, our
method still archives nearly 70% accuracy, which is much
better than other methods.

4.2. Face recognition with real disguise

Next we investigate the robustness of the proposed
method using partially occluded faces. Similar as the work-
sin [29, 5, 23, 22, 12, 11], in the experiments we choose a
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subset (50 male and 50 female subjects) of the AR database.
For each subject, the neural expression face from session 1
is selected as the gallery set. The faces with sunglasses and
scarf from both sessions are used as the probe sets (Fig. 3b).

The comparison of the recognition results between our
method and other state-of-the-art methods are provided in
Tab. 2. We use our own implementations of SRC and
DICW, and the recognition rates of other methods are cit-
ed from their papers following the same experimental set-
tings. The performance of DICW is improved by our
scheme, especially for the scarf set of session 2 (the most
difficult set for other approaches), from 81.0% to 94.9%.
Stringface[5] here represents a face as a string of line seg-
ments, which also maintains the structural information of a
face as DICW and the proposed method. FARO is also a
patch-based method as ours but is based on the partitioned
iterated function system (PIFSs)[6]. SRC-block, PD and
SOM were introduced earlier. In PWCMg 5[11], an occlu-
sion mask is trained through the use of the skin colour. Our
method clearly outperforms these approaches without any
data-dependent training. CTSDP is a 2D warping method
which is also model-free, like ours. Its performance is im-
proved by learning a suitable occlusion handling threshold
on occluded images. The overall recognition rate of our
method (96.6%) without occlusion pre-processing is very
close to that of CTSDP (98.5%) with the occlusion thresh-
old.

Table 2. Rec. rates (%) on the AR database (occlusion)
Session 1 Session 2

1
Method Sung.  Scarf  Sung. Scarf Ave. MH
Stringface([5] 88.0 96.0 76.0 88.0 87.0 No
FARO[6] 90.0 85.0 - - 87.5 No
SRC-block[29]  86.0 87.0 49.0 70.0 730 No
PD[22] 98.0 90.0 - - 940 No
SOM[23] 97.0 95.0  60.0 520 760 No
CTSDP[8] - - - - 90.6 No
DICW[27] 99.0 97.0  93.0 81.0 925 No
PWCMy.5[11]  97.0 94.0 720 71.0 83.5 Yes
CTSDP[8] - - - - 98.5 Yes
Ours 99.0 98.7 93.7 949 966 No

! Occlusion mask/threshold training required

4.3. Face recognition with various expressions

We also evaluate the effectiveness of our method using
images with expression changes in the AR database. We
use the same gallery set as in Sec. 4.2 and the images from
both sessions with smile, anger and scream expressions as
the probe sets (Fig. 3c). The Recognition results are shown
in Tab. 3. We use our own implementations of SRC and
DICW, and the recognition rates of other methods are cited
from their papers following the same experimental settings.

Our method outperforms the 7 listed approaches in most
cases. The scream expression causes large deformations of



the face. The overall performance of all approaches on the
scream sets (especially from session 2) is relatively low due
to its challenging nature. On the other hand, our method
achieves comparable recognition rates with the 2D warping
based method CTSDP. Notice that the time complexity of
CTSDP is O(i?)[20] where i = a x a’ (pixels) is the size
of the image, compared with ours is just O(R(<)?). Here
R, the number of fixations, can be viewed as a constant. e
is the fixation size and s is the size of the patch in a fixation
sequence. Generally e < ¢ and s > 1. So our method
achieves comparable performance in most cases but is more
efficient than CTSDP.

Table 3. Rec. rate (%) on the AR database (expression)

Session 1 Session 2
Method Sm. An. Sc. Sm. An. Sc. Avg.
Stringface[5]  87.5 87.5 259 - - - 67.0
FARO[6] 96.0 - 60.0 - - - 78.0
SRC[29] 98.0 89.0 55.0 79.0 780 31.0 717
PD[22] 100.0 97.0 93.0 88.0 860 63.0 878
SOM[23] 100.0 98.0 88.0 88.0 90.0 640 88.0
DMMA[16] 99.0 93.0 69.0 850 79.0 450 783
DICW[27] 100.0  99.0 84.0 91.0 920 440 85.0
CTSDPI[8] 100.0 1000 955 982 99.1 864 96.5
Ours 100.0 100.0 914 945 98.0 58.6 904

4.4. Discussion of parameters

The effect of patch size s on the recognition performance
is discussed in our previous work[27]. Here we fix s ac-
cording to the settings in [27] and study the influence of the
fixation size e and the number of fixations R. We conduc-
t experiments on the AR database using images with sun-
glasses and scarves. The recognition rates as a function of
e and R when one parameter is fixed are shown in Fig. 4.
Intuitively, if e is too small (< 3% of the image), the order
information contained in the fixation sequence will be very
limited and not suitable for recognition. On the other hand,
as mentioned in Sec. 3, since the time complexity of our
method is O(R(£)?), the increase of e leads to higher com-
putational cost (s is fixed). It can be seen from Fig. 4b, the
recognition rate is monotonically increasing with respect to
the increasing R. Considering the computational efficiency,
in our experiments, we set e = 3% of the image and empir-
ically increase the number of fixations to R = 300 in order
to gain higher recognition accuracy.

5. Conclusion

We proposed a novel method for face recognition from
single image per person, which is inspired by the mechanis-
m of fixations and saccades in human visual perception. On
the two well-known face databases (FRGC and AR), our
method clearly outperforms the current approaches when
dealing with the occlusions and expression changes. In
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Figure 4. a) Recognition rate (%) as a function of the fixation size e
and b) recognition rate (%) as a function of the number of fixations

R.

some extreme cases where the uncontrolled variations cause
large deformations of the face, our method achieves compa-
rable performance with the 2D warping based method at a
much lower computational cost.
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